1
|
Zeng X, Cui B, Wu D, Li J, Liang H, Zhou B, Li B. Construction and Properties of Oil-Loaded Soybean Protein Isolate/Polysaccharide-Based Meat Analog Fibers. Foods 2024; 13:1159. [PMID: 38672832 PMCID: PMC11048895 DOI: 10.3390/foods13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/28/2024] Open
Abstract
Rationally designing the fibrous structure of artificial meat is a challenge in enriching the organoleptic quality of meat analogs. High-quality meat analog fibers have been obtained by wet-spinning technique in our previous study, whereas introducing oil droplets will further achieve their fine design from the insight of microstructure. Herein, in this current work, oil was introduced to the soybean protein isolate/polysaccharide-based meat analog fibers by regulating the oil droplets' size and content, which, importantly, controlled the spinning solution characterization as well as structure-related properties of the meat analog fiber. Results showed that the oil dispersed in the matrix as small droplets with regular shapes, which grew in size as the oil content increased. Considering the effect of oil droplets' size and content on the spinnability of the spinning solution, the mechanical stirring treatment was chosen as the suitable treatment method. Importantly, increasing the oil content has the potential to enhance the juiciness of meat analog fibers through improvements in water-holding capacity and alterations in water mobility. Overall, the successful preparation of oil-loaded plant-based fiber not only mimicked animal muscle fiber more realistically but also provided a general platform for adding fat-soluble nutrients and flavor substances.
Collapse
Affiliation(s)
- Xinyue Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.C.); (D.W.); (J.L.); (H.L.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bing Cui
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.C.); (D.W.); (J.L.); (H.L.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.C.); (D.W.); (J.L.); (H.L.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.C.); (D.W.); (J.L.); (H.L.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.C.); (D.W.); (J.L.); (H.L.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China;
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.C.); (D.W.); (J.L.); (H.L.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
2
|
Du L, Li S, Meng Z. Fat analogue emulsions stabilized by peanut protein microgel particles: microscale and nanoscale structure and stabilization process analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3788-3797. [PMID: 38270495 DOI: 10.1002/jsfa.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Biopolymer-based microgels are being regarded increasingly as promising building blocks in food applications. This study aimed to clarify the evolution process of the network for fat analogue emulsions stabilized by peanut protein isolate (PPI) microgel particles. It also investigated the interfacial structure and characteristics of emulsions (50% oil phase, w/w) stabilized by microgels under different pH conditions. RESULTS There was an increasing interfacial adsorption capacity for PPI microgels over time (from 85.26% to the maximum of 89.78% at 24 h of storage) due to the aggregation of microgels around droplets and the development of cross-linking microgel chains between adjacent interfaces. The increased β-sheet content (from 35.51% to 41.12%) of adsorbed microgels indicated unfolding and the enhanced aggregation of microgels, which led to stronger droplet interaction. The network evolution observed with different microscopes clarified the transition to a self-supporting emulsion. The uneven adsorption of large microgel aggregates at the oil-water interface promoted larger and deformed droplets, so more fat-like medium internal phase emulsion stabilized by PPI microgel could be obtained by adjusting the microgel pH to 4.5. The interfacial membranes observed by scanning electron microscopy were thicker and coarser at pH 3.0 and 4.5 than those at pH 7.0 and 9.0. The adsorption of PPI microgel aggregates enhanced the structural strength and improved emulsion stability. CONCLUSION This work could form a basis for further studies relating physical properties to the design of plant protein-based fat analogues. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Zhang ZH, Zhang GY, Huang JR, Ge AY, Zhou DY, Tang Y, Xu XB, Song L. Microfluidized hemp protein isolate: an effective stabilizer for high-internal-phase emulsions with improved oxidative stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1668-1678. [PMID: 37847204 DOI: 10.1002/jsfa.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Hemp protein isolates (HPIs), which provide a well-balanced profile of essential amino acids comparable to other high-quality proteins, have recently garnered significant attention. However, the underutilized functional attributes of HPIs have constrained their potential commercial applications within the food and agriculture field. This study advocates the utilization of dynamic-high-pressure-microfluidization (DHPM) for the production of stable high-internal-phase emulsions (HIPEs), offering an efficient approach to fully exploit the potential of HPI resources. RESULTS The findings underscore the effectiveness of DHPM in producing HPI as a stabilizing agent for HIPEs with augmented antioxidant activity. Microfluidized HPI exhibited consistent adsorption and anchoring at the oil-water interface, resulting in the formation of a dense and compact layer. Concurrently, the compression of droplets within HIPEs gave rise to a polyhedral framework, conferring viscoelastic properties and a quasi-solid behavior to the emulsion. Remarkably, HIPEs stabilized by microfluidized HPI demonstrated superior oxidative and storage stability, attributable to the establishment of an antioxidative barrier by microfluidized HPI particles. CONCLUSION This study presents an appealing approach for transforming liquid oils into solid-like fats using HPI particles, all without the need for surfactants. HIPEs stabilized by microfluidized HPI particles hold promise as emerging food ingredients for the development of emulsion-based formulations with enhanced oxidative stability, thereby finding application in the food and agricultural industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guang-Yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Jia-Rong Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ai-Yuan Ge
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Xian-Bing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
4
|
Zhang Y, Fu W, Chen S, Liang H, Li J, Li Y, Li B. Pickering emulsions stabilized by homogenized ball-milled eggshell particles in combination with sodium alginate. Int J Biol Macromol 2023; 229:1044-1053. [PMID: 36572082 DOI: 10.1016/j.ijbiomac.2022.12.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Eggshells, by-products of egg processing, were ball-milled and homogenized into particles (eggshell particles, ESPs) and then were used as the stabilizer with a two-step oil addition method to produce Pickering emulsions. Meanwhile, sodium alginate (SA) was used to modify the emulsifying ability of ESPs. The results indicated that SA addition helped to improve the dispersion performance and increase the negative charge of ESPs. Pickering emulsions stabilized by ESPs/SA showed much smaller particle size than those stabilized by ESPs. The maximum oil fraction in the ESPs/SA-stabilized emulsions reached up to 0.8, while that was only 0.75 in ESPs-stabilized emulsions. The presence of SA significantly enhanced the freeze-thaw, thermal, dilution, and centrifuge stability of ESPs-stabilized Pickering emulsions. The findings demonstrate the potential of eggshell particles as a kind of natural Pickering stabilizer, which will increase the high value-added utilization of poultry egg industry by-products.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiting Fu
- National Egg Processing Technology R&D Professional Center, Jingmen 448000, China
| | - Siyao Chen
- National Egg Processing Technology R&D Professional Center, Jingmen 448000, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
5
|
Espinosa-Solis V, García-Tejeda YV, Portilla-Rivera OM, Chávez-Murillo CE, Barrera-Figueroa V. Effect of Mixed Particulate Emulsifiers on Spray-Dried Avocado Oil-in-Water Pickering Emulsions. Polymers (Basel) 2022; 14:polym14153064. [PMID: 35956579 PMCID: PMC9370146 DOI: 10.3390/polym14153064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Avocado oil is a very valuable agro-industrial product which can be perishable in a short time if it is not stored in the right conditions. The encapsulation of the oils through the spray drying technique protects them from oxidation and facilitates their incorporation into different pharmaceutical products and food matrices; however, the selection of environmentally friendly emulsifiers is a great challenge. Four formulations of the following solid particles: Gum Arabic, HI-CAP®100 starch, and phosphorylated waxy maize starch, were selected to prepare avocado oil Pickering emulsions. Two of the formulations have the same composition, but one of them was emulsified by rotor-stator homogenization. The rest of the emulsions were emulsified by combining rotor-stator plus ultrasound methods. The protective effect of mixed particle emulsifiers in avocado oil encapsulated by spray drying was based on the efficiency of encapsulation. The best results were achieved when avocado oil was emulsified with a mixture of phosphorylated starch/HI-CAP®100, where it presented the highest encapsulation efficiency.
Collapse
Affiliation(s)
- Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, km 5, Carretera Tamazunchale-San Martín, Tamazunchale 79960, Mexico; (V.E.-S.); (O.M.P.-R.)
| | - Yunia Verónica García-Tejeda
- Academia de Ciencias Básicas, UPIITA, Avenida Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico
- Correspondence: ; Tel.: +52-555-729-6000 (Ext. 56918)
| | - Oscar Manuel Portilla-Rivera
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, km 5, Carretera Tamazunchale-San Martín, Tamazunchale 79960, Mexico; (V.E.-S.); (O.M.P.-R.)
| | - Carolina Estefania Chávez-Murillo
- Academia de Bioingeniería, UPIIZ, Instituto Politécnico Nacional, Circuito del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico;
| | - Víctor Barrera-Figueroa
- Sección de Estudios de Posgrado e Investigación, UPIITA, Avenida Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico;
| |
Collapse
|