1
|
Yang S, Chen L, Xiong R, Jiang J, Liu Y, Tan X, Liu T, Zeng Y, Pan X, Zeng Y. Long-term straw return improves cooked indica rice texture by altering starch structural, physicochemical properties in South China. Food Chem X 2023; 20:100965. [PMID: 38144815 PMCID: PMC10739843 DOI: 10.1016/j.fochx.2023.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Straw return can improve rice eating quality by modifying starch formation from long-term field trials, whereas the relevant mechanisms are still unknown. A long-term field experiment, including straw removal (CK), straw burning return (SBR), and straw return (SR) was conducted to investigate the starch structure, physicochemical properties, and cooked rice textures of indica early- and late-rice. Compared with CK, SBR and SR enhanced relative crystallinity, amylopectin long chains in both rice seasons, and gelatinization temperatures in late rice. Compared to SBR, SR decreased protein content and amylopectin short chains but increased starch branching degree, breakdown, and stickiness, ultimately contributing to improved starch thermal and pasting properties. Meanwhile, SR decreased hardness, cohesiveness, and chewiness, resulting in cooked texture meliorated, which was mainly attributed to amylopectin chain length and starch granule size. The results suggest that SR increased cooked texture of indica rice by altering starch structural and physicochemical properties.
Collapse
Affiliation(s)
- Shiqi Yang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Chen
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, 3 Fuliang Avenue, Jingdezhen 333400, Jiangxi, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiliang Jiang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youqing Liu
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueming Tan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Taoju Liu
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjun Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Pan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Yu T, Xin Y, Liu P. Effects of 6-Benzyladenine (6-BA) on the Filling Process of Maize Grains Placed at Different Ear Positions under High Planting Density. PLANTS (BASEL, SWITZERLAND) 2023; 12:3590. [PMID: 37896052 PMCID: PMC10610517 DOI: 10.3390/plants12203590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Increasing grain weight under dense planting conditions can further improve maize yield. 6-BA is known to be involved in regulating grain development and influencing grain weight. Maize grain development is closely linked to starch accumulation and hormone levels. In this work, the effects of applying 6-BA at the flowering stage under high density on the grain filling characteristics, starch content, starch synthesis critical enzyme activity, and endogenous hormones levels of maize grains (including inferior grains (IGs) and superior grains (SGs)) of two high-yielding summer maize varieties widely cultivated in China were investigated. The findings indicated that applying 6-BA significantly improved maize yield compared to the control, mainly as a result of increased grain weight due to a faster grain filling rate. Additionally, the activities of enzymes associated with starch synthesis, including sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), and starch branching enzyme (SBE), were all increased following 6-BA application, thus facilitating starch accumulation in the grains. Applying 6-BA also increased the zeatin riboside (ZR), indole-3-acetic acid (IAA), and abscisic acid (ABA) levels, and reduced the gibberellin (GA3) level in the grains, which further improved grain filling. It is worth noting that IG had a poorer filling process than SG, possibly due to the low activities of critical enzymes for starch synthesis and imbalanced endogenous hormones levels. However, IG responded more strongly to exogenous 6-BA than SG. It appears that applying 6-BA is beneficial in improving filling characteristics, promoting starch accumulation by enhancing the activities of critical enzymes for starch synthesis, and altering endogenous hormones levels in the grains, thus improving grain filling and increasing the final grain weight and yield of maize grown under crowded conditions. These results provide theoretical and technical support for the further utilization of exogenous hormones in high-density maize production.
Collapse
Affiliation(s)
- Tao Yu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yuning Xin
- College of Agronomy, Shandong Agricultural University, Taian 271018, China;
| | - Peng Liu
- College of Agronomy, Shandong Agricultural University, Taian 271018, China;
| |
Collapse
|
3
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
4
|
Zhu Y, Deng K, Wu P, Feng K, Zhao S, Li L. Effects of Slow-Release Fertilizer on Lotus Rhizome Yield and Starch Quality under Different Fertilization Periods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1311. [PMID: 36986998 PMCID: PMC10053914 DOI: 10.3390/plants12061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Slow-release fertilizer is an environmentally friendly fertilizer that is widely used in crop cultivation instead of traditional nitrogen fertilizer. However, the optimal application time of slow-release fertilizer and its effect on starch accumulation and rhizome quality of lotus remains unclear. In this study, two slow-release fertilizer applications (sulfur-coated compound fertilizer, SCU, and resin-coated urea, RCU) were fertilized under three fertilization periods (the erect leaf stage, SCU1 and RCU1; the erect leaf completely covering the water stage, SCU2 and RCU2; and the swelling stage of lotus rhizomes, SCU3 and RCU3) to study the effects of different application periods. Compared with CK (0 kg∙ha-1 nitrogen fertilizer), leaf relative chlorophyll content (SPAD) and net photosynthetic rate (Pn) remained at higher levels under SCU1 and RCU1. Further studies showed that SCU1 and RCU1 increased yield, amylose content, amylopectin and total starch, and the number of starch particles in lotus, and also significantly reduced peak viscosity, final viscosity and setback viscosity of lotus rhizome starch. To account for these changes, we measured the activity of key enzymes in starch synthesis and the relative expression levels of related genes. Through analysis, we found that these parameters increased significantly under SCU and RCU treatment, especially under SCU1 and RCU1 treatment. The results of this study showed that the one-time application at the erect leaf stage (SCU1 and RCU1) could improve the physicochemical properties of starch by regulating the key enzymes and related genes of starch synthesis, thus improving the nutritional quality of lotus rhizome. These results provide a technical choice for the one-time application of slow-release fertilizer in lotus rhizome production and cultivation.
Collapse
Affiliation(s)
- Yamei Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Kangming Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Wang J, Lu D. Starch Physicochemical Properties of Normal Maize under Different Fertilization Modes. Polymers (Basel) 2022; 15:polym15010083. [PMID: 36616433 PMCID: PMC9823961 DOI: 10.3390/polym15010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Improving the quality with desired functions of natural starch through agronomic practice will meet the increasing need of people for natural, functional foods. A one-off application of slow-release fertilizer is a simple and efficient practice in maize production, though its influence on the starch quality is scarce. In the present study, the structural and functional properties of the starch of normal maize under two fertilization modes (one-off application of slow-release fertilizer at the sowing time (SF), and three applications of conventional fertilizer at the sowing time, and topdressing at the jointing and flowering stages (CF)) under the same fertilization level (N/P2O5/K2O = 405/135/135 kg/ha) were studied using Jiangyu877 (JY877) and Suyu30 (SY30) as materials. The observed results indicate that the size of starch granules was enlarged by fertilization and the size was the largest under CF in both hybrids. The amylose content was unaffected by CF and reduced by SF in both hybrids. In comparison to no fertilizer (0F), the peak 1/peak 2 ratio was decreased by CF in both hybrids, whereas the ratio under SF was unaffected in JY877 and decreased in SY30. The amylopectin average chain-length was reduced by fertilization and the reduction was higher under CF in JY877. The relative crystallinity was increased by CF in both hybrids and the value under SF was unaffected in SY30 and increased in JY877. The peak, trough, and final viscosities of starch were increased by fertilization in both hybrids. The starch thermal characteristics in response to fertilization modes were dependent on hybrids. The retrogradation enthalpy and percentage were increased by CF in both hybrids, whereas those two parameters under SF were increased in SY30 and decreased in JY877. In conclusion, starch with similar granule size, higher peak 1/peak 2 ratio, and lower relative crystallinity was obtained under SF than under CF for both hybrids. Longer amylopectin chain-length was observed in JY877, which induced lower pasting viscosities in SY30 and lower retrogradation characteristics in JY877.
Collapse
Affiliation(s)
| | - Dalei Lu
- Correspondence: ; Fax: +86-514-8799-6817
| |
Collapse
|