1
|
Martín-Vertedor D, Ramírez-López JC, Aleman RS, Martín-Tornero E, Montero-Fernández I. Near-Infrared Spectroscopy Detection of Off-Flavor Compounds in Tench ( Tinca tinca) After Depuration in Clean Water. Foods 2025; 14:739. [PMID: 40077442 PMCID: PMC11899403 DOI: 10.3390/foods14050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Tench (Tinca tinca) is a warm-temperate, freshwater benthic fish with often unpleasant odors and flavors which result from its natural habitat. These characteristics may deter consumers; therefore, their removal would enhance the fish's palatability and market appeal. Thus, tench were grown in an aquaculture center and subjected to a clean water depuration system in which six sampling points were carried out at 0 h, 12 h, 24 h, 48 h, 72 h, and 96 h. An analysis was conducted using gas chromatography-mass spectrometry and near-infrared spectroscopy (NIRS), revealing acid derivatives as the predominant families of volatile organic compounds (VOCs). The main off-flavor VOCs were 3,5,5-trimethyl-1-hexene, dimethyl-8-hydronaphtalen, 1-octen-3-ol, diethyl phthalate, 2-methylisoborneol, and a-isomethylionone. Maximum concentrations were observed at 0 h, exceeding 300 μg/g for diethyl phthalate and being less than 55 μg/g for the remaining VOCs. The content progressively decreased from that point on. The spectra obtained by NIRS highlighted differences between the cleaning depuration treatments, exhibiting discrimination among the samples studied (PC1 = 77.8%; PC2 = 11.3%). Finally, dimethyl-8-hydronaphtalen and 2-methylisoborneol were linearly correlated with NIRS data, with RCV2 values of 0.94 and 0.96, respectively, and RMSECV values of 1.00 and 3.62 μg/g, respectively. Therefore, a clean water depuration system is appropriate to obtain fish with fewer off-flavor characteristics. Moreover, NIRS represents an accurate, inexpensive, and non-destructive technique to determine the optimal time for the water depuration of fish.
Collapse
Affiliation(s)
- Daniel Martín-Vertedor
- Aquaculture Center ‘Las Vegas del Guadiana’, Regional Government of Extremadura, N-5, km 391.7, Villafranco del Guadiana, 06195 Badajoz, Spain; (D.M.-V.); (J.C.R.-L.)
- Research Institute of Agricultural Resources (INURA), University of Extremadura, Avda de la Investigación, s/n, 06006 Badajoz, Spain;
| | - Juan Carlos Ramírez-López
- Aquaculture Center ‘Las Vegas del Guadiana’, Regional Government of Extremadura, N-5, km 391.7, Villafranco del Guadiana, 06195 Badajoz, Spain; (D.M.-V.); (J.C.R.-L.)
| | - Ricardo S. Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA;
| | | | - Ismael Montero-Fernández
- Research Institute of Agricultural Resources (INURA), University of Extremadura, Avda de la Investigación, s/n, 06006 Badajoz, Spain;
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, Avda. de Elvas, s/n, 06071 Badajoz, Spain
| |
Collapse
|
2
|
Li P, Li Z, Hu Y, Huang S, Yu N, Niu Z, Wang Z, Zhou H, Sun X. Prediction of total volatile basic nitrogen (TVB-N) in fish meal using a metal-oxide semiconductor electronic nose based on the VMD-SSA-LSTM algorithm. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7873-7884. [PMID: 38808632 DOI: 10.1002/jsfa.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The total volatile basic nitrogen (TVB-N) is the main indicator for evaluating the freshness of fish meal, and accurate detection and monitoring of TVB-N is of great significance for the health of animals and humans. Here, to realize fast and accurate identification of TVB-N, in this article, a self-developed electronic nose (e-nose) was used, and the mapping relationship between the gas sensor response characteristic information and TVB-N value was established to complete the freshness detection. RESULTS The TVB-N variation curve was decomposed into seven subsequences with different frequency scales by means of variational mode decomposition (VMD). Each subsequence was modelled using different long short-term memory (LSTM) models, and finally, the final TVB-N prediction result was obtained by adding the prediction results based on different frequency components. To improve the performance of the LSTM, the sparrow search algorithm (SSA) was used to optimize the number of hidden units, learning rate and regularization coefficient of LSTM. The prediction results indicated that the high accuracy was obtained by the VMD-LSTM model optimized by SSA in predicting TVB-N. The coefficient of determination (R2), the root-mean-squared error (RMSE) and relative standard deviation (RSD) between the predicted value and the actual value of TVBN were 0.91, 0.115 and 6.39%. CONCLUSIONS This method improves the performance of e-nose in detecting the freshness of fish meal and provides a reference for the quality detection of e-nose in other materials. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zhaopeng Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yangting Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shiya Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Na Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zhiyou Niu
- College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Zhenhe Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hua Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
3
|
Cai X, Zhu K, Li W, Peng Y, Yi Y, Qiao M, Fu Y. Characterization of flavor and taste profile of different radish ( Raphanus Sativus L.) varieties by headspace-gas chromatography-ion mobility spectrometry (GC/IMS) and E-nose/tongue. Food Chem X 2024; 22:101419. [PMID: 38756475 PMCID: PMC11096940 DOI: 10.1016/j.fochx.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
A comprehensive study of the overall flavor and taste profile of different radishes is lacking. This study systematically compared the volatile profile of six radish varieties using HS-GC-IMS and their correlation with the E-nose analysis. Organic acids and amino acids were quantified, and their association with the E-tongues analysis was explored. A total of 73 volatile compounds were identified, with diallyl sulfide and dimethyl disulfide being the primary sulfides responsible for the unpleasant flavor in radish. Compared to other varieties, cherry radishes boast a significantly higher concentration of allyl isothiocyanate, which likely contributes to their characteristic radish flavor. Moreover, oxalic acid was identified as the most abundant organic acid in radish, accounting for over 97% of its content, followed by malic acid and succinic acid. In conclusion, the distinct flavor and taste characteristics of different radish varieties partially explain their suitability for diverse culinary preferences.
Collapse
Affiliation(s)
- Xuemei Cai
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanli Li
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China
| | - Yiqin Peng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
4
|
Cascos G, Lozano J, Montero-Fernández I, Marcía-Fuentes JA, Aleman RS, Ruiz-Canales A, Martín-Vertedor D. Electronic Nose and Gas Chromatograph Devices for the Evaluation of the Sensory Quality of Green Coffee Beans. Foods 2023; 13:87. [PMID: 38201115 PMCID: PMC10778548 DOI: 10.3390/foods13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this work is to discriminate between the volatile org9anic compound (VOC) characteristics of different qualities of green coffee beans (Coffea arabica) using two analysis approaches to classify the fresh product. High-quality coffee presented the highest values for positive attributes, the highest of which being fruity, herbal, and sweet. Low-quality samples showed negative attributes related to roasted, smoky, and abnormal fermentation. Alcohols and aromatic compounds were most abundant in the high-quality samples, while carboxylic acids, pyrazines, and pyridines were most abundant in the samples of low quality. The VOCs with positive attributes were phenylethyl alcohol, nonanal and 2-methyl-propanoic acid, and octyl ester, while those with negative attributes were pyridine, octanoic acid, and dimethyl sulfide. The aroma quality of fresh coffee beans was also discriminated using E-nose instruments. The PLS-DA model obtained from the E-nose data was able to classify the different qualities of green coffee beans and explained 96.9% of the total variance. A PLS chemometric approach was evaluated for quantifying the fruity aroma of the green coffee beans, obtaining an RP2 of 0.88. Thus, it can be concluded that the E-nose represents an accurate, inexpensive, and non-destructive device for discriminating between different coffee qualities during processing.
Collapse
Affiliation(s)
- Gema Cascos
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain;
| | - Ismael Montero-Fernández
- Department of Chemical Engineering and Physical Chemistry, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain;
| | | | - Ricardo S. Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Antonio Ruiz-Canales
- Engineering Department, Politechnic High School of Orihuela, Miguel Hernández University of Elche, 03312 Elche, Spain;
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda Adolfo Suárez s/n, 06007 Badajoz, Spain;
| |
Collapse
|
5
|
Marcia JA, Aleman RS, Kazemzadeh S, Manrique Fernández V, Martín Vertedor D, Kayanush A, Montero Fernández I. Isolated Fraction of Gastric-Digested Camel Milk Yogurt with Carao ( Cassia grandis) Pulp Fortification Enhances the Anti-Inflammatory Properties of HT-29 Human Intestinal Epithelial Cells. Pharmaceuticals (Basel) 2023; 16:1032. [PMID: 37513943 PMCID: PMC10383137 DOI: 10.3390/ph16071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Functional foods have recently generated a lot of attention among consumers looking for healthy options. Studies have examined yogurt with carao to increase health benefits and probiotic characteristics. It has been determined that carao fruit and camel milk have high phenolic compound and antioxidant activity concentrations. The objective of this study was to examine if carao (0, 1.3, 2.65, and 5.3 g/L) incorporated into yogurt enhances anti-inflammatory stimulus and antioxidant activity and impacts the physio-chemical and sensory properties of camel milk yogurt. HT-29 cells were used as a model of anti-inflammatory response, including cytokine responses of IL-8 and mRNA production of IL-1β and TNF-α in gastric digested isolated fraction. In addition, pH, titratable acidity, Streptococcus thermophilus counts and Lactobacillus bulgaricus counts of camel yogurts were examined during the fermentation process in 0, 2.5, 5, and 7 h whereas viscosity, syneresis, and radical scavenging assay evaluations were determined at hour 7. Furthermore, a consumer study was performed. Compared to control samples, the incorporation of carao into yogurts did not lead to a significant (ρ > 0.05) difference in the pH. In contrast, titratable acidity (TA), viscosity, syneresis, and antioxidant capacity significantly increased with the inclusion of 2.65 and 5.3 g/L carao, while 5.3 g/L carao significantly (ρ < 0.05) increased the counts of both bacteria. The inflammatory response of IL-8 and the level of mRNA production of IL-1β and TNF-α was significantly (ρ < 0.05) lower with 2.65 and 5.3 g/L carao yogurt compared to control camel yogurt. Sensory attributes were not impacted by the addition of 1.3 and 2.65 g/L carao. Carao could be a possible ingredient to consider when improving the nutrition value of yogurt.
Collapse
Affiliation(s)
- Jhunior Abrahan Marcia
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Road to Dulce Nombre de Culmí, Km 215, Barrio El Espino, Catacamas 16201, Honduras
- Doctorate Program in Food Science, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Shirin Kazemzadeh
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Víctor Manrique Fernández
- Nutrition and Bromatology Area, Department of Animal Production and Food Science, University of Extremadura, Avda. Adolfo Suárez, s/n, 06004 Badajoz, Spain
| | - Daniel Martín Vertedor
- Department of Nature Conservation and Protected Areas, Government of Extremadura, 06800 Mérida, Spain
| | - Aryana Kayanush
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ismael Montero Fernández
- Department of Chemical Engineering and Physical Chemistry, Area of Chemical Engineering, Faculty of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| |
Collapse
|
6
|
Cascos G, Barea-Ramos JD, Montero-Fernández I, Ruiz-Canales A, Lozano J, Martín-Vertedor D. Burn Defect and Phenol Prediction for Flavoured Californian-Style Black Olives Using Digital Sensors. Foods 2023; 12:foods12071377. [PMID: 37048198 PMCID: PMC10093727 DOI: 10.3390/foods12071377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Californian-style black olives can undergo different chemical changes during the sterilization process that can affect their sensory and phenol characteristics. Thus, these olives were stuffed with flavoured hydrocolloids and submitted to different thermal sterilization treatments to assess sensory categories. The triangular test indicated that the panellists were able to discriminate between samples from different categories according to their aromas with more than 85% success. The results indicated that the negative aroma detected by tasters was related to burn defects. The highest level of defects was found in standard olives, while the lowest was identified in the extra category. Furthermore, olives submitted to the lowest thermal sterilization treatment (extra) presented significantly higher phenol profile content, such as for hydroxytyrosol, tyrosol, oleuropein and procyanidin B1. The electronic nose (E-nose) discriminated between samples from different categories according to the specific aroma (PC1 = 82.1% and PC2 = 15.1%). The PLS-DA classified the samples with 90.9% accuracy. Furthermore, the volatile organic compounds responsible for this discrimination were creosol, copaene, benzaldehyde and diallyl disulphide. Finally, the models established by the PLS analysis indicated that the E-nose could predict olives according to their aroma and total phenol profile (RCV2 values were 0.89 and 0.92, respectively). Thus, this device could be used at the industrial level to discriminate between olives with different sensory aromas to determine those with the highest quality.
Collapse
Affiliation(s)
- Gema Cascos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Juan Diego Barea-Ramos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Ismael Montero-Fernández
- Department of Chemical Engineering and Physical Chemistry, Area of Chemical Engineering, Faculty of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - Antonio Ruiz-Canales
- Engineering Department, Miguel Hernández University of Elche, Politechnic High School of Orihuela, 03312 Elche, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
7
|
E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels. Nutrients 2022; 15:nu15010130. [PMID: 36615787 PMCID: PMC9823971 DOI: 10.3390/nu15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Almonds contain around 50% fat with a health-promoting fatty acid profile that can be extracted by pressing to obtain high-quality oils. To improve oil sensory properties, the almonds can be subjected to roasting treatments before oil extraction. However, intense thermal treatments may cause the appearance of undesirable volatile compounds causing unpleasant aromas. Thus, oils from almonds subjected to different roasting treatments (30, 45, 60 and 90 min at 150 °C) were analyzed from sensory and the chemical points of view. In addition, an electronic device (E-nose) was used in order to evaluate its usefulness in discriminating samples according to their aromas. The almonds’ roasting treatments caused changes in the sensory properties, since defects such as a burned, dry smell or wood fragrance appeared when almonds were subjected to roasting treatments (>45 min). These data agree with the analysis of volatile compounds, which showed an increase in the content of aldehyde and aromatic groups in roasted almonds oils while alcohols and terpenes decreased. Partial least squares discriminant analysis and partial least squares obtained from the E-nose were able to classify samples (97.5% success) and quantify the burned defect of the oils (Rp2 of 0.88), showing that the E-nose can be an effective tool for classifying oils.
Collapse
|
8
|
Barea-Ramos JD, Cascos G, Mesías M, Lozano J, Martín-Vertedor D. Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. SENSORS (BASEL, SWITZERLAND) 2022; 22:8654. [PMID: 36433248 PMCID: PMC9692873 DOI: 10.3390/s22228654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The roasting process is one of the critical points to obtain a product of the highest quality with certain sensorial properties including the aroma of coffee. Samples of coffee beans were roasted at different thermal treatment intensities with the aim of obtaining aromatic compounds detected with an electronic device. Sensory analysis, volatile compound profiling, and electronic nose analysis were carried out. Through principal component analysis (95.8% of the total variance of the data was explained by PC1 and PC2) and partial least squares discriminant analysis (the sum of the diagonal elements gave a hit rate of 94%), it could be demonstrated that the E-nose is able to discriminate roasted coffee beans subjected to different thermal treatments. Aromatic profiling was carried out by a testing panel and volatile compounds (VOCs) for the discrimination of roasted coffee samples. Alcohols, aromatics, esters, ketones and furanone were found in higher proportions in samples at the lowest thermal treatment. The VOCs with positive attributes were 1-(4-nitrophenyl)-3-phenylamino-propenone, carboxylic acids, 2-methoxy-4-vinylphenol, and 2-phenylethyl alcohol, while the compounds with negative ones were 2-methyl-furan, 2,5-dimethyl-pyridine, 2-methyl-butanal, and 2-furfurylthiol. The PLS model allows for the quantification of the positive and negative aromas (RCV2 = 0.92) of roasted coffee by using the E-nose. Therefore, the E-nose, that is, an inexpensive and nondestructive instrument, could be a chemometric tool able to discriminate between different qualities of coffee during processing.
Collapse
Affiliation(s)
- Juan Diego Barea-Ramos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Gema Cascos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Marta Mesías
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
9
|
Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives. Foods 2022; 11:foods11152305. [PMID: 35954071 PMCID: PMC9368533 DOI: 10.3390/foods11152305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Carao (Cassia grandis) is an America native plant characterized by its high iron content. This particular property allows its use as a natural additive to fix the black colour in California-style black olives, while masking its unpleasant aroma by stuffing olives with flavoured hydrocolloid. The tasting panel evaluated olives filled with unflavoured hydrocolloid with a fruity aroma, classified them as an extra category. Olives with the Carao addition presented a positive aroma, but also showed negative sensory attributes such as cheese, fermented and metallic flavours/aromas. The aroma of lyophilized Carao was better than the fresh one. The ‘Mojo picón’ aroma masked defective olives, allowing their classification from the second to the first commercial category. The volatile compounds belonged to the following families: terpenes, hydrocarbons, and oxygenated compounds, while the minor ones were alcohols and acid derivatives. The main volatile compounds identified were dialyl disulphide and 3-methyl-butanoic acid; among the minor ones were 2,4-dimethyl-hexane and dimethyl-silanediol and nonanal. Addition of fresh Carao increased the unpleasant aroma provoked by 3-methyl-butanoic acid, 2-methyl-butanoic acid and (E)-2-Decenal. Finally, an electronic device was able to discriminate these aromas and the results obtained agreed with those of the tasting panel and the volatile compounds.
Collapse
|
10
|
Sánchez R, Fernández A, Martín-Tornero E, Meléndez F, Lozano J, Martín-Vertedor D. Application of Digital Olfaction for Table Olive Industry. SENSORS (BASEL, SWITZERLAND) 2022; 22:5702. [PMID: 35957258 PMCID: PMC9370875 DOI: 10.3390/s22155702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The International Olive Council (IOC) established that olives must be free of odors, off-flavors, and absent of abnormal ongoing alterations or fermentations. The use of electronic devices could help when classifying defects in a fast, non-destructive, cheap, and environmentally friendly way. For all of that, table olives were evaluated according to IOC regulation in order to classify the defect predominant perceiving (DPP) of the table olives and their intensity. Abnormal fermentation defects of Spanish-style table olives were assessed previously by an IOC-validated tasting panel. 'Zapateria', 'Putrid', and 'Butyric' were the defects found at different concentrations. Different volatile compounds were identified by gas chromatography in altered table olives. The same samples were measured with an electronic nose device (E-nose). E-nose data combined with chemometrics algorithms, such as PCA and PLS-DA, were able to successfully discriminate between healthy and non-healthy table olives, being this last one also separated between the first and second categories. Volatile compounds obtained with gas chromatography could be related to the E-nose measuring and sensory analysis, being capable of matching the different defects with their correspondents' volatile compounds.
Collapse
Affiliation(s)
- Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Fernández
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | | | - Félix Meléndez
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.L.)
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.L.)
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06071 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06071 Badajoz, Spain
| |
Collapse
|
11
|
Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022; 27:molecules27134300. [PMID: 35807543 PMCID: PMC9267996 DOI: 10.3390/molecules27134300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
Spanish-style table olives are one of the most common processed foods in the Mediterranean countries. Lack of control during fermentation can lead to one of the main defects of the olive, called ‘Zapateria’, caused by the combination of volatile fatty acids reminiscent of rotten leather. In this study, table olives altered with ‘Zapateria’ defect were stuffed with a hydrocolloid flavoured with the aroma ‘Mojo picón’ to improve consumer acceptance. Sensory analysis, determination of volatile compounds and electronic nose (E-nose) were used to evaluate the quality of the olives. The control samples had a high concentration of the defect ‘Zapateria’ and were classified in the second commercial category, while higher ‘Mojo picón’ flavour concentrations resulted in these olives being classified as ‘extra category’ (a masking effect). The main volatile compounds in olives with ‘Zapateria’ defect were cyclohexanecarboxylic acid and pentanoic acid. E-nose allowed discrimination between stuffed olives without added flavouring and olives with ‘Mojo picón’ flavouring at different concentrations. Finally, PLS regression allowed a predictive linear model to be established between E-nose and sensory analysis values. The RP2 values were 0.74 for perceived defect and 0.86 for perceived aroma. The E-nose was successfully applied for the first time to classify Spanish-style table olives with ‘Zapateria’ defect intensity and with the addition of the ‘Mojo picón’ aroma masking the defect.
Collapse
|
12
|
Sánchez R, Martín-Tornero E, Lozano J, Arroyo P, Meléndez F, Martín-Vertedor D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Sánchez R, Pérez-Nevado F, Montero-Fernández I, Lozano J, Meléndez F, Martín-Vertedor D. Application of Electronic Nose to Discriminate Species of Mold Strains in Synthetic Brines. Front Microbiol 2022; 13:897178. [PMID: 35602089 PMCID: PMC9120861 DOI: 10.3389/fmicb.2022.897178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of the brine for Spanish-style table olives plays a crucial role during the fermentation process. Traditional laboratory analysis requires a high consumption of reagents, highly qualified personnel, sophisticated equipment, long analysis times, and large amounts of samples. Analysis carried out using an electronic nose (E-nose) offers an alternative, non-destructive technique and is useful in determining alterations in brines caused by microorganisms. In the present research, nine mold strains isolated from spoiled olives were inoculated in synthetic brines to determine the effect of microbial development on sensory quality, volatile profile, and the capacity of E-nose to discriminate altered brines from the healthy ones. The brines inoculated with the mold strains presented negative attributes related to aromas of mold, wood, leather, rancidity and, organic solvents among others. The highest intensity of defect was presented by the brines inoculated with the strains Galactomyces geotricum (G.G.2); three Penicillium expansum (P.E.3, P.E.4, and P.E.20); one Penicillium glabrum (P.G.19); three Aspergillus flavus (A.F.9, A.F.18, and A.F.21); and one Fusarium solani (F.S.11). A total of 19 volatile compounds were identified by gas chromatography. Sensory analysis allowed us to classify the synthetic brines based on the degree of alteration produced by the mold strains used. Also, the E-nose data were able to discriminate the inoculated brines regardless of the intensity of the defect. These results demonstrate the capacity of the E-nose to discriminate alterations in brines produced by molds, thereby making it a useful tool to be applied during the elaboration process to detect early alterations in table olive fermentation.
Collapse
Affiliation(s)
- Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Badajoz, Spain
| | - Francisco Pérez-Nevado
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Badajoz, Spain
- *Correspondence: Francisco Pérez-Nevado,
| | - Ismael Montero-Fernández
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, University of Extremadura, Badajoz, Spain
| | - Jesús Lozano
- Research Institute of Agricultural Resources (INURA), Badajoz, Spain
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | - Félix Meléndez
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Badajoz, Spain
| |
Collapse
|
14
|
Martín-Tornero E, Sánchez R, Lozano J, Martínez M, Arroyo P, Martín-Vertedor D. Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination. Foods 2021; 10:foods10122973. [PMID: 34945524 PMCID: PMC8701876 DOI: 10.3390/foods10122973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Californian-style black olives require a sterilization treatment that produces a carcinogenic contaminant, acrylamide. Thus, this compound was evaluated in two different olive cultivars using an electronic nose (E-nose). The sterilization intensity had a significant influence on the final phenol concentrations, acrylamide content, and volatile compounds. Increasing the sterilization intensity from 10 to 26 min (F0) reduced the phenol content, but it promoted acrylamide synthesis, leading to a wide range of this toxic substance. The Ester and phenol groups of volatile compounds decreased their content when the sterilization treatment increased; however, aldehyde and other volatile compound groups significantly increased their contents according to the thermal treatments. The compounds 4-ethenyl-pyridine, benzaldehyde, and 2,4-dimethyl-hexane are volatile compounds with unpleasant odours and demonstrated a high amount of influence on the differences found after the application of the thermal treatments. The “Manzanilla Cacereña” variety presented the highest amount of phenolic compounds and the lowest acrylamide content. Finally, it was found that acrylamide content is correlated with volatile compounds, which was determined using multiple linear regression analysis (R2 = 0.9994). Furthermore, the aroma of table olives was analysed using an E-nose, and these results combined with Partial Least Square (PLS) were shown to be an accurate method (range to error ratio (RER) >10 and ratio of performance to deviation (RPD) >2.5) for the indirect quantification of this toxic substance.
Collapse
Affiliation(s)
- Elísabet Martín-Tornero
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, Universidad de Extremadura, 06007 Badajoz, Spain; (E.M.-T.); (M.M.)
| | - Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Jesús Lozano
- Perception and Intelligent Systems Research Group, Universidad de Extremadura, 06006 Badajoz, Spain; (J.L.); (P.A.)
- Research Institute of Agricultural Resources INURA. Avda de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Manuel Martínez
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, Universidad de Extremadura, 06007 Badajoz, Spain; (E.M.-T.); (M.M.)
- Research Institute of Agricultural Resources INURA. Avda de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Patricia Arroyo
- Perception and Intelligent Systems Research Group, Universidad de Extremadura, 06006 Badajoz, Spain; (J.L.); (P.A.)
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Research Institute of Agricultural Resources INURA. Avda de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-01-26-64
| |
Collapse
|