1
|
Liu Q, Wang H, Li X, Tian S, Wu C, Chen Y, Qian S, Zhao S, Zhang W, Cheng F, Yang G, Wang T. A highly thermostable ethyl carbamate-degrading urethanase from Thermoflavimicrobium dichotomicum. Int J Biol Macromol 2025; 307:142245. [PMID: 40112972 DOI: 10.1016/j.ijbiomac.2025.142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The carcinogen ethyl carbamate (EC) in food is a potential threat to health. Available urethanases cannot efficiently degrade EC because of their instability or low activity under acidic conditions. Here, a novel thermostable urethanase was identified in Thermoflavimicrobium dichotomicum using a database-mining approach. The enzyme displayed exceptional thermotolerance, with an optimum temperature of 75 °C, and exhibited 58.6 % of its maximum activity at 90 °C. After incubation at temperatures below 70 °C for 30 min, 100 % activity was maintained. Following treatment at 4 °C for 6 h, it retained 59-87 % of its activity at pH 4.0-5.0, demonstrating the highest acid stability reported so far. This enzyme showed good ethanol tolerance. 80.4 % of its activity was retained after incubation in 10 % (v/v) ethanol solution at 37 °C for 1 h. The enzyme exhibited the highest EC affinity (Km, 3.545 mM), and catalytic efficiency (kcat/Km, 46.75 ± 2.34 s-1·mM-1) at pH 4.5. After reacting with 200 U/L purified enzyme at 30 °C for 5 h, 62.4 % and 9.7 % of EC were degraded from rice wine samples with pH 6.0 and 4.5, respectively. Furthermore, the enzyme exhibited significant hydrolytic activity against the 2A carcinogen acrylamide. These findings suggest that this urethanase is a promising industrial enzyme.
Collapse
Affiliation(s)
- Qingtao Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Shufang Tian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuanchao Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shiguang Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Guoqiang Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
2
|
Peng Q, Zheng H, Xue J, Xu Y, Hou Q, Yang K, Xia H, Xie G. Mechanism of Polygonum hydropiper reducing ethyl carbamate in Chinese rice wine (Huangjiu) brewing. Food Microbiol 2025; 125:104628. [PMID: 39448146 DOI: 10.1016/j.fm.2024.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
Polygonum hydropiper (PH) is a rich source of active compounds and serves as a pivotal ingredient in Chinese rice wine (Huangjiu) production. This study investigates the impact of PH and Polygonum hydropiper extract (PHE) on ethyl carbamate (EC) production during Huangjiu fermentation. Our findings reveal that PH enhances the relative abundance of Bacillus subtilis in Huangjiu fermentation, thereby facilitating its interaction with Saccharomyces cerevisiae. Furthermore, PH modulates the urea metabolism of S. cerevisiae. In the PH-B. subtilis-S. cerevisiae fermentation system, the expression of DUR1,2 and DUR3 genes in S. cerevisiae is upregulated. This augmentation leads to increased urea uptake and metabolism by S. cerevisiae in the fermentation broth, subsequently reducing the urea concentration in the fermentation medium (The EC content in the CK group was approximately 355.55 % and 356.05 % higher than those in the PH and PHE groups, respectively). Consequently, PH demonstrates promise in reducing the EC concentration of Huangjiu, offering a novel approach to enhance the safety of Huangjiu consumption.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Jingrun Xue
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, 312000, China
| | - Qifan Hou
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Kaiming Yang
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huangjia Xia
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
3
|
Yang L, Zhao T, Zhang X, Fan T, Zhang Y, Feng Z, Liu J. Crystal structure of urethanase from Candida parapsilosis and insights into the substrate-binding through in silico mutagenesis and improves the catalytic activity and stability. Int J Biol Macromol 2024; 278:134763. [PMID: 39151849 DOI: 10.1016/j.ijbiomac.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Ting Zhao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
4
|
Liu Q, Wang H, Zhang W, Cheng F, Qian S, Li C, Chen Y, Zhu S, Wang T, Tian S. High Salt-Resistant Urethanase Degrades Ethyl Carbamate in Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21266-21275. [PMID: 39268855 DOI: 10.1021/acs.jafc.4c06162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Urethanase is a promising biocatalyst for degrading carcinogen ethyl carbamate (EC) in fermented foods. However, their vulnerability to high ethanol and/or salt and acidic conditions severely limits their applications. In this study, a novel urethanase from Alicyclobacillus pomorum (ApUH) was successfully discovered using a database search. ApUH shares 49.4% sequence identity with the reported amino acid sequences. It belongs to the Amidase Signature family and has a conserved "K-S-S" catalytic triad and the characteristic "GGSS" motif. The purified enzyme overexpressed in Escherichia coli exhibits a high EC affinity (Km, 0.306 mM) and broad pH tolerance (pH 4.0-9.0), with an optimum pH 7.0. Enzyme activity remained at 58% in 12% (w/v) NaCl, and 80% in 10% (v/v) ethanol or after 1 h treatment with the same ethanol solution at 37 °C. ApUH has no hydrolytic activity toward urea. Under 30 °C, the purified enzyme (200 U/L) degraded about 15.4 and 43.1% of the EC in soy sauce samples (pH 5.0, 6.0), respectively, in 5 h. Furthermore, the enzyme also showed high activity toward the class 2A carcinogen acrylamide in foods. These attractive properties indicate their potential applications in the food industry.
Collapse
Affiliation(s)
- Qingtao Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Senhe Qian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sibao Zhu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Shufang Tian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| |
Collapse
|
5
|
Zhang X, Zhang Y, Fan T, Feng Z, Yang L. Structure-guided engineered urethanase from Candida parapsilosis with pH and ethanol tolerance to efficiently degrade ethyl carbamate in Chinese rice wine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116335. [PMID: 38626603 DOI: 10.1016/j.ecoenv.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.
Collapse
Affiliation(s)
- Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
6
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Shen C, Li Q. Application of Strain Selection Technology in Alcoholic Beverages: A Review. Foods 2024; 13:1396. [PMID: 38731767 PMCID: PMC11083718 DOI: 10.3390/foods13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
7
|
Zhao Y, Liu J, Wang H, Gou F, He Y, Yang L. Advancements in Fermented Beverage Safety: Isolation and Application of Clavispora lusitaniae Cl-p for Ethyl Carbamate Degradation and Enhanced Flavor Profile. Microorganisms 2024; 12:882. [PMID: 38792712 PMCID: PMC11124150 DOI: 10.3390/microorganisms12050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/26/2024] Open
Abstract
Ethyl carbamate (EC) is a natural by-product in the production of fermented food and alcoholic beverages and is carcinogenic and genotoxic, posing a significant food safety concern. In this study, Clavispora lusitaniae Cl-p with a strong EC degradation ability was isolated from Daqu rich in microorganisms by using EC as the sole nitrogen source. When 2.5 g/L of EC was added to the fermentation medium, the strain decomposed 47.69% of ethyl carbamate after five days of fermentation. It was unexpectedly found that the strain had the ability to produce aroma and ester, and the esterification power reached 30.78 mg/(g·100 h). When the strain was added to rice wine fermentation, compared with the control group, the EC content decreased by 41.82%, and flavor substances such as ethyl acetate and β-phenylethanol were added. The EC degradation rate of the immobilized crude enzyme in the finished yellow rice wine reached 31.01%, and the flavor substances of yellow rice wine were not affected. The strain is expected to be used in the fermented food industry to reduce EC residue and improve the safety of fermented food.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Han Wang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Fayuan Gou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Yiwei He
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
| | - Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China; (Y.Z.); (J.L.); (H.W.); (F.G.); (Y.H.)
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
8
|
Li L, Li N, Fu J, Liu J, Ping Wen X, Cao H, Xu H, Zhang Y, Cao R. Synthesis of an autochthonous microbial community by analyzing the core microorganisms responsible for the critical flavor of bran vinegar. Food Res Int 2024; 175:113742. [PMID: 38129049 DOI: 10.1016/j.foodres.2023.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Traditional bran vinegar brewing unfolds through natural fermentation, a process driven by spontaneous microbial activity. The unique metabolic activities of various microorganisms lead to distinct flavors and qualities in each batch of vinegar, making it challenging to consistently achieve the desired characteristic flavor compounds. Therefore, identifying the critical microbial species responsible for flavor production and designing starter cultures with improved fermentation efficiency and characteristic flavors are effective methods to address this discrepancy. In this study, 11 core functional microbial species affecting the fermentation flavor of Sichuan shai vinegar (Cupei were placed outside solarization and night-dew for more than one year, and vinegar was the liquid leached from Cupei) (SSV), were revealed by combining PacBio full-length diversity sequencing based on previous metagenomics. The effects of environmental factors and microbial interactions on the growth of 11 microorganisms during fermentation were verified using fermentation experiments. Ultimately, the microbial community was strategically synthesized using a 'top-down' approach, successfully replicating the distinctive flavor profile of Sichuan shai vinegar (SSV). The results showed that the interaction between microorganisms and environmental factors affected microorganism growth. Compared with traditional fermentation, the synthetic microbial community's vinegar-fermented grains (Cupei) can reproduce the key flavor of SSV and is conducive to the production of amino acids. In this study, the key flavor of SSV was reproduced through rational design of the synthetic microbial community. This achievement holds profound significance for the broader application of microbiome assembly strategies in the realm of fermented foods.
Collapse
Affiliation(s)
- Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China.
| | - Na Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Junjie Fu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Jun Liu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Xue Ping Wen
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Hong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Hongwei Xu
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Ying Zhang
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Rong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| |
Collapse
|
9
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Meng N, Zhang J. Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Res Int 2023; 172:113226. [PMID: 37689963 DOI: 10.1016/j.foodres.2023.113226] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
Huangjiu is a traditional Chinese alcoholic beverage, whose non-volatile chemical profile remains unclarified. Here, the non-volatile compounds of Huangjiu were first identified using a widely targeted metabolomics analysis. In total, 1146 compounds were identified, 997 of them were identified in Huangjiu for the first time. Moreover, 113 compounds were identified as key active ingredients of traditional Chinese medicines and 78 components were found as active pharmaceutical ingredients against 389 diseases. In addition, the comparative analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that Huangjiu from different regions differ in metabolite composition. Cofactor and amino acid biosynthesis and ABC transport were the dominant metabolic pathways. Furthermore, 7 metabolic pathways and 77 metabolic pathway regulatory markers were further found to be related with the different characteristics of different Huangjius. This study provides a theoretical and material basis for the quality control, health efficacy, and industrial development of Huangjiu.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Danqing Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinglin Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Sun M, Xu W, Zhang W, Guang C, Mu W. Microbial elimination of carbamate pesticides: specific strains and promising enzymes. Appl Microbiol Biotechnol 2022; 106:5973-5986. [PMID: 36063179 DOI: 10.1007/s00253-022-12141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Carbamate pesticides are widely used in the environment, and compared with other pesticides in nature, they are easier to decompose and have less durability. However, due to the improper use of carbamate pesticides, some nontarget organisms still may be harmed. To this end, it is necessary to investigate effective removal or elimination methods for carbamate pesticides. Current effective elimination methods could be divided into four categories: physical removal, chemical reaction, biological degradation, and enzymatic degradation. Physical removal primarily includes elution, adsorption, and supercritical fluid extraction. The chemical reaction includes Fenton oxidation, photo-radiation, and net electron reduction. Biological degradation is an environmental-friendly manner, which achieves degradation by the metabolism of microorganisms. Enzymatic degradation is more promising due to its high substrate specificity and catalytic efficacy. All in all, this review primarily summarizes the property of carbamate pesticides and the traditional degradation methods as well as the promising biological elimination. KEY POINTS: • The occurrence and toxicity of carbamate pesticides were shown. • Biological degradation strains against carbamate pesticides were presented. • Promising enzymes responsible for the degradation of carbamates were discussed.
Collapse
Affiliation(s)
- Minwen Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|