1
|
Wei X, Tang D. Effect of Bacteroides on Crohn's disease. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:393-402. [PMID: 39586813 DOI: 10.1055/a-2435-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Crohn's disease (CD), also known as cicatrizing enteritis, is an inflammatory bowel disease that occurs in the distal ileum and right colon of unknown cause and is also called inflammatory bowel disease (IBD) with ulcerative colitis (UC). In recent years, intestinal biota have been confirmed to play a significant role in various gastrointestinal diseases. Studies have found that intestinal microbiota disorders are closely associated with the onset and progression of Crohn's disease. Bacteroidetes, the second largest microbiota in the intestine, are crucial for equilibrium in the microbiota and intestinal environment. Certain Bacteroides can induce the development of Crohn's disease and aggravate intestinal inflammation directly or through their metabolites. Conversely, certain Bacteroides can reduce intestinal inflammation and symptoms of Crohn's disease. This article reviews the effect of several intestinal Bacteroides in the onset and progression of Crohn's disease and their impact on its treatment.
Collapse
Affiliation(s)
- Xuanyu Wei
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Nanjing University, Yangzhou, China
| |
Collapse
|
2
|
Yuan J, Wang Z, Li H, Xu B. Effects of temperature fluctuations on the quality and microbial diversity of beef meatballs during simulated cold chain distribution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7704-7712. [PMID: 38860511 DOI: 10.1002/jsfa.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cold chain distribution with multiple links maintains low temperatures to ensure the quality of meat products, whereas temperature fluctuations during this are often disregarded by the industry. The present study simulated two distinct temperatures cold chain distribution processes. Quality indicators and high-throughput sequencing were employed to investigate the effects of temperature fluctuations on the quality and microbial diversity of beef meatballs during cold chain distribution. RESULTS Quality indicators revealed that temperature fluctuations during simulated cold chain distribution significantly (P < 0.05) exacerbated the quality deterioration of beef meatballs. High-throughput sequencing demonstrated that temperature fluctuations affected the diversity and structure of microbial community. Lower microbial species abundance and higher microbial species diversity were observed in the temperature fluctuations group. Proteobacteria and Pseudomonas were identified as the dominant phylum and genus in beef meatballs, respectively, exhibiting faster growth rates and greater relative abundance under temperature fluctuations. CONCLUSION The present study demonstrates that temperature fluctuations during simulated cold chain distribution can worsen spoilage and shorten the shelf life of beef meatballs. It also offers certain insights into the spoilage mechanism and preservation of meat products during cold chain distribution. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Huale Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Liu PY, Xia D, McGonigle K, Carroll AB, Chiango J, Scavello H, Martins R, Mehta S, Krespan E, Lunde E, LeVine D, Fellman CL, Goggs R, Beiting DP, Garden OA. Immune-mediated hematological disease in dogs is associated with alterations of the fecal microbiota: a pilot study. Anim Microbiome 2023; 5:46. [PMID: 37770990 PMCID: PMC10540429 DOI: 10.1186/s42523-023-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The dog is the most popular companion animal and is a valuable large animal model for several human diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treatment. In total, 21 affected and 13 healthy control dogs were included in the study. RESULTS IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escherichia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24-0.34), while Ruminococcaceae UCG-009 and Christensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2-32.74] and 8.36 [95% CI 1.85-71.88] respectively). CONCLUSIONS This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or negative risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/or therapeutic applications.
Collapse
Affiliation(s)
- P-Y Liu
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - D Xia
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - K McGonigle
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - A B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - J Chiango
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - H Scavello
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - R Martins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - S Mehta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Lunde
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
| | - D LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL, 36849, USA
| | - C L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - R Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Box 31, Ithaca, NY, 14853, USA
| | - D P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA.
- Dean's Office, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
4
|
Zhang P, Zhou X, Tan H, Jian F, Jing Z, Wu H, Zhang Y, Luo J, Zhang J, Sun X. Microbial signature of intestine in children with allergic rhinitis. Front Microbiol 2023; 14:1208816. [PMID: 37560527 PMCID: PMC10408450 DOI: 10.3389/fmicb.2023.1208816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Previous studies have found that unique patterns of gut microbial colonization in infancy associated with the development of allergic diseases. However, there is no research on the gut microbiota characteristics of AR children in Chinese Mainland. OBJECTIVE To investigate the changes of gut microbial of AR children in Chinese Mainland and evaluate the correlation between gut microbial and clinical indexes. METHODS In this clinical study, fecal samples from 24 AR children and 25 healthy control children (HCs) were comparative via next generation sequencing of the V3-V4 regions of the 16S rRNA gene. Analyzed the relationship between clinical features and gut microbial using Spearman correlation. RESULTS Compared to HCs, AR children showed significant decreases in Shannon index and significant increases in Simpson index at both the family and genera levels (all p < 0.05). In terms of bacterial composition, at the phylum level, AR children had higher abundance of Bacteroidetes than that in the HCs group (p < 0.05) and were significantly positively correlated with TNSS (p < 0.05). At the family level, AR children had higher abundance of Prevotellaceae and Enterobacteriaceae higher than that in the HCs group (all p < 0.05) and had a significantly positive correlation with TNSS, eosinophils (EOS) and total immunoglobulin E (tIgE) (all p < 0.05). At the genus level, reduced abundance of Agathobacter, Parasutterella, Roseburia and Subdoligranulum were also observed in the AR cohorts compared to HCs (all p < 0.05) and significantly negatively associated with TNSS, EOS, tIgE, QOL, and FeNO (all p < 0.05). CONCLUSION AR children in Chinese Mainland were characterized by reduced microbial diversity and distinguished microbial characteristics in comparison with HCs. The observations of this study offer proof that distinctive gut microbiota profiles were present in AR children and necessitate further investigation in the form of mechanistic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Liu H, Zhang B, Li F, Liu L, Yang T, Zhang H, Li F. Effects of heat stress on growth performance, carcass traits, serum metabolism, and intestinal microflora of meat rabbits. Front Microbiol 2022; 13:998095. [PMID: 36519173 PMCID: PMC9743647 DOI: 10.3389/fmicb.2022.998095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/04/2022] [Indexed: 07/30/2023] Open
Abstract
To investigate the effects of heat stress on meat rabbits, we assigned 80 rabbits to the moderate temperature group (24 ± 1°C; Control group) and the continuous high-temperature group (HT group), then monitored the effects using growth performance, carcass characteristics, biochemical assays, UPLC-MS/MS-based metabolomics, and microbiome. The results showed that after continuous high-temperature exposure, the average daily gain, average daily feed intake, and thymus index were significantly decreased (p < 0.05). Contents of HSP70, ALP, and Cortisol in serum were significantly increased, while TP, GLU, T3, and T4 were significantly decreased (p < 0.05). Nine kinds of differential metabolites were screened by serum metabolomics, which can be used as biomarkers of heat stress in meat rabbits. The selected differential metabolites were analyzed by KEGG annotation and enrichment analysis. The results showed that 14 pathways affected by heat stress were identified by KEGG pathway enrichment analysis, including Sphingolipid metabolism, Pyrimidine metabolism, Citrate cycle (TCA cycle)), aminoacyl-tRNA biosynthesis, and so on. The analysis of the effect of heat stress on the cecal microflora of meat rabbits showed that the abundance of cecal Proteus in the HT group was significantly higher than that in the moderate Control group. The number of Candidatus-saccharimonas in the cecum microflora was significantly higher than that in the moderate temperature group (p < 0.05) which may be related to inflammatory diseases in the heat stress group. These findings indicated that the heat-stressed rabbits were in negative energy balance, which affected protein metabolism, and subsequently affected growth performance and carcass characteristics.
Collapse
Affiliation(s)
- Hongli Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Department of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Bin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Tongao Yang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Department of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Department of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|