1
|
Lao H, Chang J, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Xiong J, Li P, Yu C, Feng T. Novel kokumi peptides from yeast extract and their taste mechanism via an in silico study. Food Funct 2024; 15:2459-2473. [PMID: 38328886 DOI: 10.1039/d3fo04487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.
Collapse
Affiliation(s)
- Haofeng Lao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jincui Chang
- D.CO International Food Co., Ltd, Jiaozuo, 454850, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, No. 2080, Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jian Xiong
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Pei Li
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
2
|
Cui H, Li H, Wu Y, Hu X. Identification, flavor characteristics and molecular docking of umami taste peptides of Xuanwei ham. Food Res Int 2023; 173:113211. [PMID: 37803535 DOI: 10.1016/j.foodres.2023.113211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 10/08/2023]
Abstract
To better understand the palatable properties of Xuanwei ham, the aqueous extract was isolated, analyzed and combin with sensory evaluation. Of umami-tasting activity and umami-enhancing impact, four new peptides (MDAIKKMQ, RKYEEVAR, YVGDEAQSKRG, and VNVDEVGGEALGR) were extracted and identified by ultrafiltration, gel separation, reverse performance liquid chromatography, and nano-LC-MS / MS. Sensory evaluation results showed that all of them had umami activity and enhanced umami taste, among which VNVDEVGGEALGR had the best effect. These peptides' umami taste thresholds ranged from 0.25 to 0.8 mg/mL. The MSG solution's umami taste threshold ranged from 0.125 to 0.5 mg/mL. Molecular docking results showed that the four umami peptides could be embedded into the binding pocket of the T1R3 cavity of the umami taste receptor T1R1/T1R3, wherein the binding sites Asp219, Asp150, and Thr179 may play crucial roles, and Glu222, Asp108, Glu217 and Glu148 play auxiliary roles. Hydrogen bonding and hydrophobic interactions were the most prominent interaction forces. This study helps to clarify the flavor characteristics of Xuanwei ham and could improve new processing technology.
Collapse
Affiliation(s)
- Hongwei Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China
| | - Hongyuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China
| | - Yue Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| |
Collapse
|
3
|
Cao L, Hunt CJ, Meyer AS, Lametsch R. New Insight into the Substrate Selectivity of Bovine Milk γ-glutamyl Transferase via Structural and Molecular Dynamics Predictions. Molecules 2023; 28:4657. [PMID: 37375212 PMCID: PMC10301124 DOI: 10.3390/molecules28124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Bovine milk γ-glutamyltransferase (BoGGT) can produce γ-glutamyl peptides using L-glutamine as a donor substrate, and the transpeptidase activity is highly dependent on both γ-glutamyl donors and acceptors. To explore the molecular mechanism behind the donor and acceptor substrate preferences for BoGGT, molecular docking and molecular dynamic simulations were performed with L-glutamine and L-γ-glutamyl-p-nitroanilide (γ-GpNA) as donors. Ser450 is a crucial residue for the interactions between BoGGT and donors. BoGGT forms more hydrogen bonds with L-glutamine than γ-GpNA, promoting the binding affinity between BoGGT and L-glutamine. Gly379, Ile399, and Asn400 are crucial residues for the interactions between the BoGGT intermediate and acceptors. The BoGGT intermediate forms more hydrogen bonds with Val-Gly than L-methionine and L-leucine, which can promote the transfer of the γ-glutamyl group from the intermediate to Val-Gly. This study reveals the critical residues responsible for the interactions of donors and acceptors with the BoGGT and provides a new understanding of the substrate selectivity and catalytic mechanism of GGT.
Collapse
Affiliation(s)
- Lichuang Cao
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark;
| | - Cameron J. Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (C.J.H.); (A.S.M.)
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (C.J.H.); (A.S.M.)
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark;
| |
Collapse
|
4
|
Ding H, Han Z, Wang B, Wang Y, Ran Y, Zhang L, Li Y, Lu C, Lu X, Ma L. Effect of Direct Steam Injection and Instantaneous Ultra-High-Temperature (DSI-IUHT) Sterilization on the Physicochemical Quality and Volatile Flavor Components of Milk. Molecules 2023; 28:molecules28083543. [PMID: 37110776 PMCID: PMC10143338 DOI: 10.3390/molecules28083543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of variations in the heat treatment process of milk on its quality and flavor are inevitable. This study investigated the effect of direct steam injection and instantaneous ultra-high-temperature (DSI-IUHT, 143 °C, 1-2 s) sterilization on the physicochemical properties, whey protein denaturation (WPD) rate, and volatile compounds (VCs) of milk. The experiment compared raw milk as a control with high-temperature short-time (HTST, 75 °C 15 s and 85 °C 15 s) pasteurization and indirect ultra-high-temperature (IND-UHT, 143 °C, 3-4 s) sterilization. The results showed no significant differences (p > 0.05) in physical stability between milk samples with different heat treatments. The DSI-IUHT and IND-UHT milks presented smaller particle sizes (p < 0.05) and more concentrated distributions than the HTST milk. The apparent viscosity of the DSI-IUHT milk was significantly higher than the other samples (p < 0.05) and is consistent with the microrheological results. The WPD of DSI-IUHT milk was 27.52% lower than that of IND-UHT milk. Solid-phase microextraction (SPME) and solvent-assisted flavor evaporation (SAFE) were combined with the WPD rates to analyze the VCs, which were positively correlated with ketones, acids, and esters and negatively associated with alcohols, heterocycles, sulfur, and aldehydes. The DSI-IUHT samples exhibited a higher similarity to raw and HTST milk than the IND-UHT samples. In summary, DSI-IUHT was more successful in preserving the milk's quality due to its milder sterilization conditions compared to IND-UHT. This study provides excellent reference data for the application of DSI-IUHT treatment in milk processing.
Collapse
Affiliation(s)
- Hao Ding
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaosheng Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yadong Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yawen Ran
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liebing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chun Lu
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Xiaoli Lu
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Ligang Ma
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| |
Collapse
|