1
|
Zhang Y, Zhang C, Wang J, Wen Y, Li H, Liu X, Liu X. Can proteins, protein hydrolysates and peptides cooperate with probiotics to inhibit pathogens? Crit Rev Food Sci Nutr 2023; 65:1023-1036. [PMID: 38032153 DOI: 10.1080/10408398.2023.2287185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Studies have shown that probiotics can effectively inhibit pathogens in the presence of proteins, protein hydrolysates and peptides (protein derivates). However, it is still unclear the modes of probiotics to inhibit pathogens regulated by protein derivates. Therefore, we summarized the possible effects of protein derivates from different sources on probiotics and pathogens. There is abundant evidence that proteins and peptides from different sources can significantly promote the proliferation of probiotics and increase their secretion of antibacterial substances. Such proteins and peptides can also stimulate the adhesion of probiotics to intestinal epithelial cells and contribute to regulating intestinal immunity, but they seem to have the negative effects on pathogens. Moreover, a direct effect of proteins on intestinal cells is summarized. Whether or not they can cooperate with probiotics to inhibit pathogens using above possible mechanisms were discussed. Furthermore, there seems to be no consistent conclusions that protein derivates have synergistic effects with probiotics, and there is still limited evidence on the inhibiting patterns. Therefore, the existing problems and shortcomings are noted, and future research direction is proposed.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chi Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jingyi Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yanchao Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
2
|
Gao PP, Liu HQ, Ye ZW, Zheng QW, Zou Y, Wei T, Guo LQ, Lin JF. The beneficial potential of protein hydrolysates as prebiotic for probiotics and its biological activity: a review. Crit Rev Food Sci Nutr 2023; 64:13045-13057. [PMID: 37811651 DOI: 10.1080/10408398.2023.2260467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Han-Qing Liu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Qian-Wang Zheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Yuan Zou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| |
Collapse
|
3
|
Jayaprakash P, Gaiani C, Edorh JM, Borges F, Beaupeux E, Maudhuit A, Desobry S. Comparison of Electrostatic Spray Drying, Spray Drying, and Freeze Drying for Lacticaseibacillus rhamnosus GG Dehydration. Foods 2023; 12:3117. [PMID: 37628116 PMCID: PMC10453923 DOI: 10.3390/foods12163117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Spray drying (SD) is extensively used to encapsulate lactic acid bacteria in large-scale industrial applications; however, bacteria combat several harms that reduce their viability. In this study, a novel technique called electrostatic spray drying (ESD) was used to explore the benefits and disadvantages of using electrostatic charge and lower temperatures in the system. Freeze drying (FD) was used as a reference. The effect of different encapsulation agents, like maltodextrin, arabic gum, and skim milk, on the viability of Lacticaseibacillus rhamnosus GG (LGG) was investigated. The initial cell concentration, particle size distribution, aspect ratio, sphericity, scanning-electron-microscopy images, moisture content, water activity, glass transition, rehydration abilities, and survival during storage were compared. Skim milk was proven to be the best protectant for LGG, regardless of the drying process or storage time. A huge reduction in cell numbers (4.49 ± 0.06 log CFU/g) was observed with maltodextrin using SD; meanwhile, it was protected with minimum loss (8.64 ± 0.62 log CFU/g) with ESD. In general, ESD preserved more LGG cells during processing compared to SD, and provided better stability than FD and SD during storage, regardless of the applied voltage. The ESD product analysis demonstrated an efficient LGG preservation, close to FD; therefore, ESD presented to be a promising and scalable substitute for SD and FD.
Collapse
Affiliation(s)
- Preethi Jayaprakash
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Claire Gaiani
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
| | - Jean-Maxime Edorh
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
| | - Elodie Beaupeux
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Audrey Maudhuit
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Stéphane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
| |
Collapse
|
4
|
Effect of different drying methods on the functional properties of probiotics encapsulated using prebiotic substances. Appl Microbiol Biotechnol 2023; 107:1575-1588. [PMID: 36729228 DOI: 10.1007/s00253-023-12398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Probiotics and prebiotics together work synergistically as synbiotics and confer various health benefits. Many studies on synbiotic foods only focus on the survival of probiotics but fail to evaluate their functional properties. The impact on functional properties should be explored to better understand its therapeutic efficacy. In this work, probiotics (Lactiplantibacillus plantarum NCIM 2083) were encapsulated with prebiotics (fructooligosaccharide + whey protein + maltodextrin) using spray-drying (SD), freeze-drying (FD), spray-freeze-drying (SFD), and refractance window-drying (RWD) techniques. Aggregation, intestinal adhesion, antagonistic activity, and bile salt hydrolase (BSH) activity of probiotics were studied before and after the encapsulation process. The SFD probiotics showed better aggregation ability (79% at 24-h incubation), on par with free cells (FC) (81% at 24-h incubation). The co-aggregation ability of encapsulated probiotics has drastic variations with each pathogenic strain. The adhesion ability of probiotics in chicken intestinal mucus was assessed by the crystal violet method, indicating no significant variations between FC and SFD probiotics. Also, encapsulated probiotics exhibit antagonistic activity (zone of inhibition in mm) against gut pathogens E. coli (11.33 to 17.34), S. faecalis (8.83 to 15.32), L. monocytogenes (13.67 to 18), S. boydii (12.17 to 15.5), and S. typhi (2.17 to 6.86). Overall, these studies confirm the significance and impact of various drying techniques on the functionality of encapsulated probiotics in synbiotic powders. KEY POINTS: • Understanding the relevance of processing effects on the functionality of probiotics. • Spray-freeze-dried probiotics showed superior functional properties. • The encapsulation process had no significant impact on bile salt hydrolase activity.
Collapse
|