1
|
Wang F, Zeng J, Lin L, Wang X, Zhang L, Tao N. Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation. Food Chem 2025; 470:142731. [PMID: 39755039 DOI: 10.1016/j.foodchem.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems. Understanding the relationship between structure and function aids in tailoring applications to specific needs. This review outlines the challenges associated with delivering AST and reviews the mechanisms involved in creating delivery systems, specifically focusing on the structure-function relationship of biomaterials. It comprehensively introduces the positive synergistic effect of biomaterials with enhancing the functional properties of AST, and analyzes the impact of designed structures on function regulation and the application prospects of the delivery system in the food industry. The future demand for efficient delivery of AST will increasingly depend on the positive synergistic effect between biomaterials.
Collapse
Affiliation(s)
- Fengqiujie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Shill MC, Jalal MFB, Shuma ML, Mollick PP, Muhit MA, Halder S. Gynura procumbens leaf extract-loaded self-microemulsifying drug delivery system offers enhanced protective effects in the hepatorenal organs of the experimental rats. PLoS One 2025; 20:e0304435. [PMID: 39992935 PMCID: PMC11849907 DOI: 10.1371/journal.pone.0304435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Gynura procumbens, known as longevity spinach, is a plant traditionally used in tropical Asian countries for its anti-inflammatory, hepatoprotective, anti-hypertensive, and anti-hyperglycemic properties. The current study aimed to enhance the hepatorenal protective activity of Gynura procumbens leaf extract (GLE) by developing a self-microemulsifying drug delivery system (SMEDDS). SMEDDS-GLE exhibited the formation of small micelles with a mean droplet size of 231 nm. This resulted in a significant enhancement in the dispersion of GLE in water, as evidenced by a dispersibility that was at least 4.8 times greater than that of GLE alone. In the rat model of hepatic injury induced by cisplatin (7.5 mg/kg, i.p.), the administration of SMEDDS-GLE (75 mg-GLE/kg, p.o.) significantly reduced liver damage, observed by histological examination and reduced levels of plasma biomarkers associated with hepatic injury. Furthermore, according to histological examination findings and plasma biomarkers assessment, SMEDDS-GLE enhanced the nephroprotective benefits of GLE in the rat model of acute kidney injury. Based on these findings, a strategic application of the SMEDDS-based approach could be a viable choice to enhance GLE's nutraceutical properties.
Collapse
Affiliation(s)
- Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md. Faisal Bin Jalal
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Madhabi Lata Shuma
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University Bangladesh, Dhaka, Bangladesh
| | | | - Md. Abdul Muhit
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shimul Halder
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Zhong C, Liu T, Diao J, Li X, Liu M, Wang Y. Preparation and characterization of astaxanthin-loaded liposomes by phytosterol oleate instead of cholesterol. Food Chem 2025; 462:141008. [PMID: 39217746 DOI: 10.1016/j.foodchem.2024.141008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Hydrophobic bioactive compounds like astaxanthin (AST) exhibit poor water solubility and low bioavailability. Liposomes, which serve as nanocarriers, are known for their excellent biocompatibility and minimal immunogenicity. Traditionally, liposomes have been primarily constructed using phospholipids and cholesterol. However, the intake of cholesterol may pose a risk to human health. Phytosterol ester was reported to reduce level of cholesterol and improve properties of liposomes. In this study, phytosterol oleate was used to prepare liposomes instead of cholesterol to deliver AST (AST-P-Lip). The size range of AST-P-Lip was 100-220 nm, and the morphology was complete and uniform. In vitro studies showed that AST-P-Lip significantly enhanced the antioxidant activity and oral bioavailability of AST. During simulated digestion, AST-P-Lip protected AST from damage by gastric and intestinal digestive fluid. Additionally, AST-P-Lip had a good storage stability and safety. These results provide references for the preparation of novel liposomes and the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Chen Zhong
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China; Municipal Engineering Research Center of Aquatic Biological Quality Evaluation and Application, Qingdao 266104, China
| | - Tianhong Liu
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China; Municipal Engineering Research Center of Aquatic Biological Quality Evaluation and Application, Qingdao 266104, China
| | - Jing Diao
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China; Municipal Engineering Research Center of Aquatic Biological Quality Evaluation and Application, Qingdao 266104, China
| | - Xueting Li
- Haide College, Ocean University of China, Qingdao 266003, China
| | - Mei Liu
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China; Municipal Engineering Research Center of Aquatic Biological Quality Evaluation and Application, Qingdao 266104, China.
| | - Ying Wang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China; Municipal Engineering Research Center of Aquatic Biological Quality Evaluation and Application, Qingdao 266104, China.
| |
Collapse
|
4
|
Li C, Du M, Meng L, Adu-Frimpong M, Gong C, Zheng S, Shi W, Wang Q, Toreniyazov E, Ji H, Cao X, Yu J, Xu X. Preparation, characterisation, and pharmacodynamic study of myricetin pH-sensitive liposomes. J Microencapsul 2024; 41:269-283. [PMID: 38618699 DOI: 10.1080/02652048.2024.2337461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
AIMS Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 μg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Lingzhi Meng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Caizhi Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sile Zheng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wentao Shi
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Jiangsu University, Nanjing, Jiangsu Province211300, P.R. China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Karakalpakstan, Uzbekistan
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| |
Collapse
|
5
|
Ahmmed MK, Hachem M, Ahmmed F, Rashidinejad A, Oz F, Bekhit AA, Carne A, Bekhit AEDA. Marine Fish-Derived Lysophosphatidylcholine: Properties, Extraction, Quantification, and Brain Health Application. Molecules 2023; 28:molecules28073088. [PMID: 37049852 PMCID: PMC10095705 DOI: 10.3390/molecules28073088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA1 or PLA2. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the sn-2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the sn-1 position is acylated). The 2-LPC type is more highly bioavailable to the brain than the 1-LPC type. Given the biological and health aspects of LPC types, it is important to understand the structure, properties, extraction, quantification, functional role, and effect of the processing of LPC. This review examines various aspects involved in the extraction, characterization, and quantification of LPC. Further, the effects of processing methods on LPC and the potential biological roles of LPC in health and wellbeing are discussed. DHA-rich-LysoPLs, including LPC, can be enzymatically produced using lipases and phospholipases from wide microbial strains, and the highest yields were obtained by Lipozyme RM-IM®, Lipozyme TL-IM®, and Novozym 435®. Terrestrial-based phospholipids generally contain lower levels of long-chain omega-3 PUFAs, and therefore, they are considered less effective in providing the same health benefits as marine-based LPC. Processing (e.g., thermal, fermentation, and freezing) reduces the PL in fish. LPC containing omega-3 PUFA, mainly DHA (C22:6 omega-3) and eicosapentaenoic acid EPA (C20:5 omega-3) play important role in brain development and neuronal cell growth. Additionally, they have been implicated in supporting treatment programs for depression and Alzheimer’s. These activities appear to be facilitated by the acute function of a major facilitator superfamily domain-containing protein 2 (Mfsd2a), expressed in BBB endothelium, as a chief transporter for LPC-DHA uptake to the brain. LPC-based delivery systems also provide the opportunity to improve the properties of some bioactive compounds during storage and absorption. Overall, LPCs have great potential for improving brain health, but their safety and potentially negative effects should also be taken into consideration.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Ataturk University, Yakutiye 25030, Turkey
| | - Adnan A. Bekhit
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir 32038, Bahrain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Correspondence: ; Tel.: +64-3-479-4994
| |
Collapse
|