1
|
Silymarin Dehydroflavonolignans Chelate Zinc and Partially Inhibit Alcohol Dehydrogenase. Nutrients 2021; 13:nu13124238. [PMID: 34959790 PMCID: PMC8708252 DOI: 10.3390/nu13124238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Silymarin is known for its hepatoprotective effects. Although there is solid evidence for its protective effects against Amanita phalloides intoxication, only inconclusive data are available for alcoholic liver damage. Since silymarin flavonolignans have metal-chelating activity, we hypothesized that silymarin may influence alcoholic liver damage by inhibiting zinc-containing alcohol dehydrogenase (ADH). Therefore, we tested the zinc-chelating activity of pure silymarin flavonolignans and their effect on yeast and equine ADH. The most active compounds were also tested on bovine glutamate dehydrogenase, an enzyme blocked by zinc ions. Of the six flavonolignans tested, only 2,3-dehydroderivatives (2,3-dehydrosilybin and 2,3-dehydrosilychristin) significantly chelated zinc ions. Their effect on yeast ADH was modest but stronger than that of the clinically used ADH inhibitor fomepizole. In contrast, fomepizole strongly blocked mammalian (equine) ADH. 2,3-Dehydrosilybin at low micromolar concentrations also partially inhibited this enzyme. These results were confirmed by in silico docking of active dehydroflavonolignans with equine ADH. Glutamate dehydrogenase activity was decreased by zinc ions in a concentration-dependent manner, and this inhibition was abolished by a standard zinc chelating agent. In contrast, 2,3-dehydroflavonolignans blocked the enzyme both in the absence and presence of zinc ions. Therefore, 2,3-dehydrosilybin might have a biologically relevant inhibitory effect on ADH and glutamate dehydrogenase.
Collapse
|
2
|
Xu L, Huang Q, Tan X, Zhao Q, Wu J, Liao H, Ai W, Liu Y, Lai Z, Fu L. Patchouli alcohol ameliorates acute liver injury via inhibiting oxidative stress and gut-origin LPS leakage in rats. Int Immunopharmacol 2021; 98:107897. [PMID: 34182243 DOI: 10.1016/j.intimp.2021.107897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Alcoholism represents a predisposing factor for liver-related morbidity and mortality worldwide. Pogostemon cablin has been widely used in China for the treatment of digestive system diseases. Patchouli oil, the major active fraction of Pogostemon cablin, can ameliorate alcohol-induced acute liver injury (ALI). However, patchouli alcohol (PA),a principal bioactive ingredient of PO, exerts a protection against ALI remains elusive. Thepresentwork focused on the hepatoprotection of PA against acute ethanol-induced hepatotoxicity in rats. In this study, male Wistar rats orally received PA (10, 20, or 40 mg/kg), PO (400 mg/kg) and silymarin (200 mg/kg) for ten days. On the 8th day, the rats orally received 65% ethanol (10 mL/kg, 6.5 g/kg) every 12 h for 3 days. Results showed that PA wasfound to reduce alcohol-induced ALI, as evidenced bysignificantly alleviated histopathologicalalterations, decreased the elevation ofALT and AST levels, and enhancedthe alcoholdehydrogenase(ADH) andaldehyde dehydrogenase (ALDH) activities. Additionally, PA markedly suppressed ROS levels and increased antioxidant enzyme activities via the CYP2E1/ROS/Nrf2/HO-1 pathway. PA regulated lipid accumulation by markedly inhibiting the expression of lipogenesis-related genes and stimulating that of lipolysis-relatedgenes, which were associated with the activation of theAMPKpathway. What's more, PA pretreatment also restored acute alcohol-inducedalterationsin gut barrier function, colonic histopathology, and gut microbiota richness and evenness. PA pretreatment alleviated gut-origin LPS-inducedinflammation by inhibiting the MyD88/TLR4/NF-κB signal pathway. In general, PA ameliorates ethanol-induced ALI via restoration of CYP2E1/ROS/Nrf2/HO-1-mediatedoxidativestressand AMPK-mediated fat accumulation, as well as alleviation of gut-LPS-leakage-induced inflammation regulated by the MyD88/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qionghui Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Xiaocui Tan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qian Zhao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jiazhen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Huijun Liao
- Department of Clinical Pharmacy and Pharmaceutical services, Huazhong University of Science and Technology Union Shenzhen Hospital (the 6th affiliated hospital of Shenzhen University), Shenzhen 518052, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, PR China.
| | - Ludi Fu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Bae J, Choi WS, Shin CY, Sohn UD. Modulation of the TLR4/MyD88/NF- κB Pathway by Humulus japonicus Extract Protects Against Alcohol-Induced Liver Injury in a Rat Model. J Med Food 2020; 24:18-27. [PMID: 33290158 DOI: 10.1089/jmf.2019.4650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alcohol induces liver injury related to oxidative stress and inflammatory responses. The purpose of this study was to investigate the hepatoprotective effect of Humulus japonicus extract (HJE) against alcohol-induced liver injury. Furthermore, we investigated the mechanisms of the protective effect of HJE on alcohol-induced liver injury. The pretreatment of HJE decreased the levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, and total cholesterol in the plasma, suppressed the malondialdehyde, myeloperoxidase, and enhanced the activities of superoxide dismutase, glutathione, and catalase. The inhibitory effect of HJE against oxidative stress may be associated with the upregulation of nuclear factor erythroid 2-related factor 2 and its target gene heme oxygenase-1. Moreover, HJE inhibited the pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta) by downregulating toll-like receptor 4, myeloid differentiation primary response 88, and nuclear factor kappa B p65. These findings provide evidence for the elucidation of the hepatoprotective mechanisms for HJE.
Collapse
Affiliation(s)
- Jinhyung Bae
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
4
|
Lee HY, Nam Y, Choi WS, Kim TW, Lee J, Sohn UD. The hepato-protective effect of eupatilin on an alcoholic liver disease model of rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:385-394. [PMID: 32830145 PMCID: PMC7445478 DOI: 10.4196/kjpp.2020.24.5.385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Eupatilin is known to possess anti-apoptotic, anti-oxidative, and anti-inflammatory properties. We report here that eupatilin has a protective effect on the ethanol-induced injury in rats. Sprague–Dawley rats were divided into 6 groups: control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100 mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were analyzed to determine the extent of liver damage. Total cholesterol (TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis. Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH) level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β were quantified to verify the degree of inflammation. Based on our findings, chronic alcohol treatment significantly changed the serum indexes and liver indicators of the model rats, which were significantly improved by eupatilin treatment. Rats in the eupatilin-treatment group showed reduced levels of AST, ALT, TG, TC, TNF-α, and IL-1β, increased SOD activity and GSH levels, and improved overall physiology compared to the alcoholic liver disease model rats. H&E staining also verified the eupatilin-mediated improvement in liver injury. In conclusion, eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hak Yeong Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yoonjin Nam
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Tae Wook Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
5
|
Ma X, Chang Y, Zhang Y, Muhammad I, Shi C, Li R, Li C, Li Z, Lin Y, Han Q, Liu F. Effects of C2-Ceramide and Oltipraz on Hepatocyte Nuclear Factor-1 and Glutathione S-Transferase A1 in Acetaminophen-Mediated Acute Mice Liver Injury. Front Pharmacol 2018; 9:1009. [PMID: 30254584 PMCID: PMC6141969 DOI: 10.3389/fphar.2018.01009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, acetaminophen (APAP)-induced acute liver injury mice model was used to investigate the effects of C2-ceramide and oltipraz on hepatocyte nuclear factor 1 (HNF-1) and glutathione S-transferase A1 (GSTA1). Notably, C2-ceramide caused alteration in mice serum transaminases and liver tissue indexes, and aggravated hepatic injury, while oltipraz alleviated hepatic injury. By screening, the optimal concentrations of C2-ceramide and oltipraz were confirmed to be 120 and 150 μmol/L, respectively. In histopathology, karyolysis and more necrotic cells and bleeding spots were appeared on administration of C2-ceramide, but only a small amount of inflammatory cells infiltration was seen after oltipraz treatment. In addition, RT-PCR and western blot results revealed that the mRNA and protein expression levels of HNF-1 and GSTA1 in liver were significantly decreased (p < 0.01) with the administration of 120 μmol/L C2-ceramide. Meanwhile, GSTA1 content in serum increased up to 1.27-fold. In contrast, 150 μmol/L oltipraz incorporation to APAP model mice resulted in obvious elevation (p < 0.01) in the mRNA and protein expression levels of HNF-1 and GSTA1 in liver, and serum GSTA1 content decreased up to 0.77-fold. In conclusion, C2-ceramide could down-regulate the expression of HNF-1 and GSTA1 which exacerbated hepatic injury, while oltipraz could up-regulate the expression of HNF-1 and GSTA1 which mitigated hepatic injury.
Collapse
Affiliation(s)
- Xin Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yicong Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ishfaq Muhammad
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chenxi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Changwen Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuexia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fangping Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
6
|
Bianconi V, Mannarino MR, Sahebkar A, Cosentino T, Pirro M. Cholesterol-Lowering Nutraceuticals Affecting Vascular Function and Cardiovascular Disease Risk. Curr Cardiol Rep 2018; 20:53. [PMID: 29802549 DOI: 10.1007/s11886-018-0994-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an update on the effects of the dietary supplementation with cholesterol-lowering nutraceuticals and nutraceutical combinations affecting vascular function and CV risk in clinical interventional studies. RECENT FINDINGS Current evidence supports the mild-to-moderate cholesterol-lowering efficacy of red yeast rice, berberine, plant sterols, fibers, and some nutraceutical combinations whereas data on the individual cholesterol-lowering action of other nutraceuticals are either less striking or even inconclusive. There is also promising evidence on the vascular protective effects of some of the aforementioned nutraceuticals. However, except for red yeast rice, clinical interventional studies have not investigated their impact on CV outcomes. Evidence of both cholesterol-lowering and vascular protection is a prerogative of few single nutraceuticals and nutraceutical combinations, which may support their clinical use; however, caution on their uncontrolled adoption is necessary as they are freely available on the market and, therefore, subject to potential misuse.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy
| | - Massimo Raffaele Mannarino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Teresa Cosentino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy.
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
7
|
Polydatin Protects Rat Liver against Ethanol-Induced Injury: Involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-κB p65 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7953850. [PMID: 29250126 PMCID: PMC5698823 DOI: 10.1155/2017/7953850] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Excessive alcohol consumption leads to serious liver injury, associating with oxidative stress and inflammatory response. Previous study has demonstrated that polydatin (PD) exerted antioxidant and anti-inflammatory effects and attenuated ethanol-induced liver damage, but the research remained insufficient. Hence, this experiment aimed to evaluate the hepatoprotective effect and potential mechanisms of PD on ethanol-induced hepatotoxicity. Our results showed that PD pretreatment dramatically decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in the serum, suppressed the malonaldehyde (MDA) and triglyceride (TG) content and the production of reactive oxygen species (ROS), and enhanced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), andalcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH), paralleled by an improvement of histopathology alterations. The protective effect of PD against oxidative stress was probably associated with downregulation of cytochrome P450 2E1 (CYP2E1) and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target gene haem oxygenase-1 (HO-1). Moreover, PD inhibited the release of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) via downregulating toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) p65. To conclude, PD pretreatment protects against ethanol-induced liver injury via suppressing oxidative stress and inflammation.
Collapse
|
8
|
Marcelino P, Marinho HS, Campos MC, Neves AR, Real C, Fontes FS, Carvalho A, Feio G, Martins MBF, Corvo ML. Therapeutic activity of superoxide dismutase-containing enzymosomes on rat liver ischaemia-reperfusion injury followed by magnetic resonance microscopy. Eur J Pharm Sci 2017; 109:464-471. [PMID: 28887231 DOI: 10.1016/j.ejps.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Liver ischaemia-reperfusion injury (IRI) may occur during hepatic surgery and is unavoidable in liver transplantation. Superoxide dismutase enzymosomes (SOD-enzymosomes), liposomes where SOD is at the liposomal surface expressing enzymatic activity in intact form without the need of liposomal disruption, were developed with the aim of having a better insight into its antioxidant therapeutic outcome in IRI. We also aimed at validating magnetic resonance microscopy (MRM) at 7T as a tool to follow IRI. SOD-enzymosomes were characterized and tested in a rat ischaemia-reperfusion model and the therapeutic outcome was compared with conventional long circulating SOD liposomes and free SOD using biochemical liver injury biomarkers, histology and MRM. MRM results correlated with those obtained using classical biochemical biomarkers of liver injury and liver histology. Moreover, MRM images suggested that the therapeutic efficacy of both SOD liposomal formulations used was related to prevention of peripheral biliary ductular damage and disrupted vascular architecture. Therefore, MRM at 7T is a useful technique to follow IRI. SOD-enzymosomes were more effective than conventional liposomes in reducing liver ischaemia-reperfusion injury and this may be due to a short therapeutic window.
Collapse
Affiliation(s)
- Paulo Marcelino
- CEDOC, Nova Medical School, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - H Susana Marinho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Maria Celeste Campos
- Anatomia Patológica, Hospital Curry Cabral, Rua da Beneficência n.° 8, 1069-166 Lisboa, Portugal.
| | - Ana Rita Neves
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Filipa S Fontes
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal and Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Alexandra Carvalho
- CENIMAT-I3N-DCM, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus da Caparica, 2829-515 Caparica, Portugal; IEQUALTECS, Lda, R. Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD, Portugal.
| | - Gabriel Feio
- CENIMAT-I3N-DCM, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus da Caparica, 2829-515 Caparica, Portugal.
| | - M Bárbara F Martins
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal and Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Luísa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal and Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
9
|
Dietary potato peel extract reduces the toxicity of cholesterol oxidation products in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Lee YT, Hsieh YL, Yeh YH, Huang CY. Synthesis of phenolic amides and evaluation of their antioxidant and anti-inflammatory activity in vitro and in vivo. RSC Adv 2015. [DOI: 10.1039/c5ra14137k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
15 phenolic amides (PAs) have been synthesized and examinedin vitrousing four tests: (1) prevention of Cu2+-induced human low-density lipoprotein oxidation, (2) scavenging of stable radicals, (3) anti-inflammatory activity, and (4) scavenging of superoxide radicals.
Collapse
Affiliation(s)
- Ya-Ting Lee
- Department of Beauty Science
- National Taichung University of Science and Technology
- Taichung
- Republic of China
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung
- Republic of China
| | - Yen-Hung Yeh
- School of Health Diet and Industry Management
- Chung Shan Medical University
- Taichung
- Republic of China
- Department of Nutrition
| | - Chih-Yang Huang
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung
- Republic of China
- Graduate Institute of Basic Medical Science
| |
Collapse
|