1
|
Sturaro M. Carotenoids in Potato Tubers: A Bright Yellow Future Ahead. PLANTS (BASEL, SWITZERLAND) 2025; 14:272. [PMID: 39861622 PMCID: PMC11768161 DOI: 10.3390/plants14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Carotenoids, the bright yellow, orange, and red pigments of many fruits and vegetables, are essential components of the human diet as bioactive compounds not synthesized in animals. As a staple crop potato has the potential to deliver substantial amounts of these nutraceuticals despite their lower concentration in tubers compared to edible organs of other plant species. Even small gains in tuber carotenoid levels could have a significant impact on the nutritional value of potatoes. This review will focus on the current status and future perspectives of carotenoid biofortification in potato with conventional breeding and biotechnological approaches. The high biodiversity of tuber carotenoid levels and composition is presented, with an emphasis on the under-exploited native germplasm that represents a wide reservoir of useful genetic variants to breed carotenoid-rich varieties. The following section describes the structural genes involved in carotenoid metabolism and storage known to have a major impact on carotenoid accumulation in potato, together with the strategies that harnessed their expression changes to increase tuber carotenoid content. Finally, the little information available on the regulation of carotenoid metabolism and the desirable future advances in potato carotenoid biofortification are discussed.
Collapse
Affiliation(s)
- Monica Sturaro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, via Stezzano 24, 24126 Bergamo, Italy
| |
Collapse
|
2
|
Rasheed H, Deng B, Ahmad D, Bao J. Genetic Diversity and Genome-Wide Association Study of Total Phenolics, Flavonoids, and Antioxidant Properties in Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2024; 25:12795. [PMID: 39684503 DOI: 10.3390/ijms252312795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic diversity of nutritional quality traits is crucial for potato breeding efforts to develop better varieties for the diverse market demands. In this study, the genetic diversity of 104 potato genotypes was estimated based on nutritional quality traits such as color parameters, total phenolic content, total flavonoid content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis-(3-ethylbezothiazoline-6-sulphonic acid) radical scavenging potential across two environments. The results indicated that environment II, Hangzhou 2020, exhibited higher bioactive compounds and antioxidant properties than environment I, Hangzhou 2019. The colored potato accessions exhibited higher levels of total phenolic content, total flavonoid content, DPPH, and ABTS activities than the white potato accessions, indicating the superiority of the colored to white potato accessions. The genome sequencing identified 1,101,368 high-quality single-nucleotide polymorphisms (SNPs), and 141,656 insertion/deletions (Indels). A population structure analysis revealed that genotypes can be divided into two subpopulations. Genome-wide association studies (GWAS) identified 128 significant SNPs associated with potato's color, total phenolic content, total flavonoid content, and antioxidant properties. Thus, the study provides new opportunities for strategic breeding and marker-assisted selection of ideal varieties and favorable alleles to enhance bioactive compounds and health-beneficial properties.
Collapse
Affiliation(s)
- Haroon Rasheed
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Kulakova AV, Shchennikova AV, Kochieva EZ. Potato Solanum tuberosum L. Phytoene Synthase Genes (StPSY1, StPSY2, and StPSY3) Are Involved in the Plant Response to Cold Stress. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 516:21-26. [PMID: 38538824 DOI: 10.1134/s0012496624700935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 05/26/2024]
Abstract
The structure and phylogeny of the Solanum tuberosum L. phytoene synthase genes StPSY1, StPSY2, and StPSY3 were characterized. Their expression was studied in potato seedlings exposed to cold stress in the dark phase of the diurnal cycle to simulate night cooling. All of the three genes were activated as the temperature decreased, and the greatest response was observed for StPSY1. StPSY3 was for the first time shown to respond to cold stress and photoperiod. A search for cis-regulatory elements was carried out in the promoter regions and 5'-UTRs of the StPSY genes, and the regulation of all three genes proved associated with the response to light. A high level of cold-induced activation of StPSY1 was tentatively attributed to the presence of cis elements associated with sensitivity to cold and ABA.
Collapse
Affiliation(s)
- A V Kulakova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, 119071, Moscow, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, 119071, Moscow, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
4
|
Wu X, Cui Z, Li X, Yu Z, Lin P, Xue L, Khan A, Ou C, Deng Z, Zhang M, Yao W, Yu F. Identification and characterization of PAL genes involved in the regulation of stem development in Saccharum spontaneum L. BMC Genom Data 2024; 25:38. [PMID: 38689211 PMCID: PMC11061975 DOI: 10.1186/s12863-024-01219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Saccharum spontaneum L. is a closely related species of sugarcane and has become an important genetic component of modern sugarcane cultivars. Stem development is one of the important factors for affecting the yield, while the molecular mechanism of stem development remains poorly understanding in S. spontaneum. Phenylalanine ammonia-lyase (PAL) is a vital component of both primary and secondary metabolism, contributing significantly to plant growth, development and stress defense. However, the current knowledge about PAL genes in S. spontaneum is still limited. Thus, identification and characterization of the PAL genes by transcriptome analysis will provide a theoretical basis for further investigation of the function of PAL gene in sugarcane. RESULTS In this study, 42 of PAL genes were identified, including 26 SsPAL genes from S. spontaneum, 8 ShPAL genes from sugarcane cultivar R570, and 8 SbPAL genes from sorghum. Phylogenetic analysis showed that SsPAL genes were divided into three groups, potentially influenced by long-term natural selection. Notably, 20 SsPAL genes were existed on chromosomes 4 and 5, indicating that they are highly conserved in S. spontaneum. This conservation is likely a result of the prevalence of whole-genome replications within this gene family. The upstream sequence of PAL genes were found to contain conserved cis-acting elements such as G-box and SP1, GT1-motif and CAT-box, which collectively regulate the growth and development of S. spontaneum. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that SsPAL genes of stem had a significantly upregulated than that of leaves, suggesting that they may promote the stem growth and development, particularly in the + 6 stem (The sixth cane stalk from the top to down) during the growth stage. CONCLUSIONS The results of this study revealed the molecular characteristics of SsPAL genes and indicated that they may play a vital role in stem growth and development of S. spontaneum. Altogether, our findings will promote the understanding of the molecular mechanism of S. spontaneum stem development, and also contribute to the sugarcane genetic improving.
Collapse
Affiliation(s)
- Xiaoqing Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Zetian Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Xinyi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Zehuai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Pingping Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Li Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Abdullah Khan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Cailan Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Zuhu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China.
| | - Fan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory for Sugarcane Biology, Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Content and Stability of Hydroxycinnamic Acids during the Production of French Fries Obtained from Potatoes of Varieties with Light-Yellow, Red and Purple Flesh. Antioxidants (Basel) 2023; 12:antiox12020311. [PMID: 36829870 PMCID: PMC9951911 DOI: 10.3390/antiox12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Potatoes with different flesh colours contain health-promoting compounds, i.e., hydroxycinnamic acids, which vary in content and stability during thermal processing. The aim of this study was to determine the effect of the technological stages of the production of French fries obtained from potatoes with different flesh colours on the content of selected hydroxycinnamic acids, as well as the stability of these acids, their percentage in sum of acids, total phenolic content and antioxidant activity (ABTS, DPPH) in semi-products and ready-to-eat products. During the production of French fries, samples of unpeeled, peeled, cut, blanched, pre-dried and fried potatoes were collected. After peeling, coloured potatoes, especially purple ones, had more hydroxycinnamic (5-CQA, 4-CQA, 3-CQA and CA) acids remaining in the flesh than in the flesh of the light-yellow variety. The greatest losses of the determined hydroxycinnamic acids, regardless of the given potato's variety, were caused by the stage of pre-drying (about 91%) and frying (about 97%). The French fries obtained from the potatoes with coloured flesh, especially those with purple flesh, had the highest amount of stable 5-CQA and 4-CQA acids as well as 3-CQA acid, already absent in light-yellow French fries. The least stable acid was CA acid, which was not found in any of the ready snacks.
Collapse
|
6
|
Berdugo-Cely JA, Céron-Lasso MDS, Yockteng R. Phenotypic and molecular analyses in diploid and tetraploid genotypes of Solanum tuberosum L. reveal promising genotypes and candidate genes associated with phenolic compounds, ascorbic acid contents, and antioxidant activity. FRONTIERS IN PLANT SCIENCE 2023; 13:1007104. [PMID: 36743552 PMCID: PMC9889998 DOI: 10.3389/fpls.2022.1007104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Potato tubers contain biochemical compounds with antioxidant properties that benefit human health. However, the genomic basis of the production of antioxidant compounds in potatoes has largely remained unexplored. Therefore, we report the first genome-wide association study (GWAS) based on 4488 single nucleotide polymorphism (SNP) markers and the phenotypic evaluation of Total Phenols Content (TPC), Ascorbic Acid Content (AAC), and Antioxidant Activity (AA) traits in 404 diverse potato genotypes (84 diploids and 320 tetraploids) conserved at the Colombian germplasm bank that administers AGROSAVIA. The concentration of antioxidant compounds correlated to the skin tuber color and ploidy level. Especially, purple-blackish tetraploid tubers had the highest TPC (2062.41 ± 547.37 mg GAE), while diploid pink-red tubers presented the highest AA (DDPH: 14967.1 ± 4687.79 μmol TE; FRAP: 2208.63 ± 797.35 mg AAE) and AAC (4.52 mg ± 0.68 AA). The index selection allowed us to choose 20 promising genotypes with the highest values for the antioxidant compounds. Genome Association mapping identified 58 SNP-Trait Associations (STAs) with single-locus models and 28 Quantitative Trait Nucleotide (QTNs) with multi-locus models associated with the evaluated traits. Among models, eight STAs/QTNs related to TPC, AAC, and AA were detected in common, flanking seven candidate genes, from which four were pleiotropic. The combination in one population of diploid and tetraploid genotypes enabled the identification of more genetic associations. However, the GWAS analysis implemented independently in populations detected some regions in common between diploids and tetraploids not detected in the mixed population. Candidate genes have molecular functions involved in phenolic compounds, ascorbic acid biosynthesis, and antioxidant responses concerning plant abiotic stress. All candidate genes identified in this study can be used for further expression analysis validation and future implementation in marker-assisted selection pre-breeding platforms targeting fortified materials. Our study further revealed the importance of potato germplasm conserved in national genebanks, such as AGROSAVIA's, as a valuable genetic resource to improve existing potato varieties.
Collapse
Affiliation(s)
- Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería-Cereté, Montería, Córdoba, Colombia
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
| | - María del Socorro Céron-Lasso
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, National Museum of Natural History, Paris, France
| |
Collapse
|
7
|
Wilmer L, Pawelzik E, Naumann M. Comparison of the Effects of Potassium Sulphate and Potassium Chloride Fertilisation on Quality Parameters, Including Volatile Compounds, of Potato Tubers After Harvest and Storage. FRONTIERS IN PLANT SCIENCE 2022; 13:920212. [PMID: 35898212 PMCID: PMC9310035 DOI: 10.3389/fpls.2022.920212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Potatoes are an important staple food with high yield potential and great nutritional value. Potassium (K) fertilisation can increase both tuber yield and quality, but its effects differ depending on the K fertilisation form. Potatoes are known to be chloride sensitive, since chloride ions can influence, for example, the starch content. Therefore, fertilisations shortly before planting using potassium sulphate (K2SO4) are often recommended instead of potassium chloride (KCl). However, the use of different fertilisation forms is contradictory, and the chloride sensitivity of potatoes remains unclear. To examine this issue in more detail, a 2-year field experiment using two cultivars, "Laura" and "Marabel," was conducted. K fertilisation with 240 kg K2O as K2SO4 and KCl was applied, and the control remained unfertilised. Quality traits, including internal and external parameters, were analysed after harvest and after 5 months of storage at 6°C. The results revealed minor effects on yield, but the starch content and ascorbic acid concentration were reduced due to the KCl supply. Furthermore, the reducing sugar concentration in tubers increased during storage more after KCl compared to K2SO4 fertilisation. Moreover, volatile compounds were affected by the K fertilisation form, with higher levels of lipid-derived off-flavour compounds after KCl application. However, the effects of cultivation year, cultivar, and storage interacted with the influence of the fertilisation form. In summary, KCl fertilisation can disadvantageously influence several quality traits, but the use of potato cultivars should also be considered when recommending fertilisers.
Collapse
|
8
|
Mo F, Li L, Zhang C, Yang C, Chen G, Niu Y, Si J, Liu T, Sun X, Wang S, Wang D, Chen Q, Chen Y. Genome-Wide Analysis and Expression Profiling of the Phenylalanine Ammonia-Lyase Gene Family in Solanum tuberosum. Int J Mol Sci 2022; 23:ijms23126833. [PMID: 35743276 PMCID: PMC9224352 DOI: 10.3390/ijms23126833] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Phenylalanine ammonia-lyase is one of the most widely studied enzymes in the plant kingdom. It is a crucial pathway from primary metabolism to significant secondary phenylpropanoid metabolism in plants, and plays an essential role in plant growth, development, and stress defense. Although PAL has been studied in many actual plants, only one report has been reported on potato, one of the five primary staple foods in the world. In this study, 14 StPAL genes were identified in potato for the first time using a genome-wide bioinformatics analysis, and the expression patterns of these genes were further investigated using qRT-PCR. The results showed that the expressions of StPAL1, StPAL6, StPAL8, StPAL12, and StPAL13 were significantly up-regulated under drought and high temperature stress, indicating that they may be involved in the stress defense of potato against high temperature and drought. The expressions of StPAL1, StPAL2, and StPAL6 were significantly up-regulated after MeJa hormone treatment, indicating that these genes are involved in potato chemical defense mechanisms. These three stresses significantly inhibited the expression of StPAL7, StPAL10, and StPAL11, again proving that PAL is a multifunctional gene family, which may give plants resistance to multiple and different stresses. In the future, people may improve critical agronomic traits of crops by introducing other PAL genes. This study aims to deepen the understanding of the versatility of the PAL gene family and provide a valuable reference for further genetic improvement of the potato.
Collapse
Affiliation(s)
- Fangyu Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Long Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Chenghui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Gong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Jiaxin Si
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Tong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Xinxin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Shenglan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.C.); (Y.C.)
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
- Correspondence: (Q.C.); (Y.C.)
| |
Collapse
|
9
|
Comparative study on nutrient composition and antioxidant capacity of potato based on geographical and climatic factors. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bellumori M, Chasquibol Silva NA, Vilca L, Andrenelli L, Cecchi L, Innocenti M, Balli D, Mulinacci N. A Study on the Biodiversity of Pigmented Andean Potatoes: Nutritional Profile and Phenolic Composition. Molecules 2020; 25:molecules25143169. [PMID: 32664446 PMCID: PMC7397087 DOI: 10.3390/molecules25143169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/25/2022] Open
Abstract
The characterization of six varieties of native Andean potatoes with a wide biodiversity in tuber shape, flesh, and skin color was performed, through the determination of their proximate composition, mineral content, and phenolic profile. Minerals concentration revealed significant genotypic variation. Potassium was the most abundant element in all varieties, ranging from 7272.9 to 13,059.9 µg/g and from 12,418 to 17,388.6 µg/g dried weight for the flesh and skin samples, respectively. Iron content was relevant, ranging from 20.5 to 39.9 µg/g and from 112.2 to 288.8 µg/g dried weight in flesh and skin samples, respectively. Phenolic compounds were consistently higher in the skin than in the flesh. The total content varied greatly from 19.5 to 2015.3 µg/g and from 1592.3 to 14807.3 µg/g dried weight for flesh and skin tissues, respectively. 5-caffeoylquinic acid was 74% of the total phenolic acids. Different pattern of anthocyanins was found, depending on the color of the variety; the red genotypes contained predominantly pelargonidin derivatives, while the purple samples had petunidin as a major anthocyanidin. This study increases the knowledge of the composition of the local Andean varieties (which are only scarcely studied so far), helping to enhance these genotypes and the conservation of biodiversity.
Collapse
Affiliation(s)
- Maria Bellumori
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Nancy A. Chasquibol Silva
- Center of Studies and Innovation of Functional Foods (CEIAF), Faculty of Industrial Engineering, Institute of Scientific Research, IDIC, University of Lima, Avda. Javier Prado Este, 4600 Surco, Lima 33, Peru; (N.A.C.S.); (L.V.)
| | - Laida Vilca
- Center of Studies and Innovation of Functional Foods (CEIAF), Faculty of Industrial Engineering, Institute of Scientific Research, IDIC, University of Lima, Avda. Javier Prado Este, 4600 Surco, Lima 33, Peru; (N.A.C.S.); (L.V.)
| | - Luisa Andrenelli
- Department of Agriculture, Food, Environment and Forestry University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Lorenzo Cecchi
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Marzia Innocenti
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Diletta Balli
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
| | - Nadia Mulinacci
- Department of NEUROFARBA, University of Florence, Nutraceutical and Pharmaceutical section, via U. Schiff 6, Sesto F.no, 50019 Florence, Italy; (M.B.); (L.C.); (M.I.); (D.B.)
- Correspondence: ; Tel.: +39-0554573773
| |
Collapse
|
11
|
Gutiérrez-Quequezana L, Vuorinen AL, Kallio H, Yang B. Impact of cultivar, growth temperature and developmental stage on phenolic compounds and ascorbic acid in purple and yellow potato tubers. Food Chem 2020; 326:126966. [PMID: 32416419 DOI: 10.1016/j.foodchem.2020.126966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Phenolic compounds and ascorbic acid were analyzed in one yellow and four purple-flesh potato cultivars grown at 13 °C and 18 °C and harvested at different stages of tuber development, using HPLC-DAD and UHPLC-MS. The expression of genes in the phenylpropanoid pathway was studied at transcription level using qPCR. Petunidin-3-p-coumaroylrutinoside-5-glucoside was the most abundant anthocyanin in 'Blue Congo', 'Blaue Schweden', and 'Synkeä Sakari', whereas malvidin-3-p-coumaroylrutinoside-5-glucoside dominated in 'Blaue Veltlin'. In mature tubers, the purple cultivar 'Synkeä Sakari' showed the highest content of anthocyanins (2.4 mg/g freeze-dried sample), and 'Blaue Veltlin' had the highest content of phenolic acids (5.5 mg/g). Cultivar was the main variable affecting the biosynthesis of the studied metabolites, whereas the temperatures studied did not show different impact. The content of the main phenolic acids and anthocyanins in the potato cultivars correlated positively with the expression levels of the genes involved in the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Liz Gutiérrez-Quequezana
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Anssi L Vuorinen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
12
|
Cuéllar-Cepeda FA, Parra-Galindo MA, Urquijo J, Restrepo-Sánchez LP, Mosquera-Vásquez T, Narváez-Cuenca CE. Influence of genotype, agro-climatic conditions, cooking method, and their interactions on individual carotenoids and hydroxycinnamic acids contents in tubers of diploid potatoes. Food Chem 2019; 288:127-138. [DOI: 10.1016/j.foodchem.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
13
|
Goyer A, Pellé J. Relationships between tyrosine, phenylalanine, chlorogenic acid, and ascorbic acid concentrations and blackspot biochemical potential and blackspot susceptibility in stored russet potatoes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3735-3740. [PMID: 29315596 DOI: 10.1002/jsfa.8884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Blackspot in potato is an internal tissue discoloration that occurs during handling and transport of potato tubers. Blackspot is cosmetically undesirable and represents a huge economic cost for the potato industry. The aim of this study was to test whether concentrations of certain metabolites in the potato tuber cortex could predict blackspot susceptibility. RESULTS Seven russet potato varieties were stored for eight months at 8.8 °C. Stored tubers were subjected to mechanical impact and evaluated for blackspot susceptibility. A blackspot susceptibility index was calculated for each variety by determining an index for the percentage of the tuber cortex area that was covered with blackspot, and an index for the intensity of blackspot discoloration. Concentrations of tyrosine, chlorogenic acid, phenylalanine, and ascorbic acid, and blackspot biochemical potential of tubers to synthesize pigments were measured in the tuber cortex. Blackspot indices, metabolites concentrations and blackspot biochemical potential varied significantly between varieties. Tyrosine concentrations strongly, significantly, and positively correlated with blackspot biochemical potential. Phenylalanine concentrations showed good, significant, and positive correlation with blackspot biochemical potential and discoloration index. None of the analyzed metabolites correlated with blackspot susceptibility. CONCLUSION Concentrations of tyrosine and phenylalanine explained up to ∼80% of the variation in blackspot biochemical potential between varieties but did not correlate with blackspot susceptibility. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | - Julien Pellé
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| |
Collapse
|
14
|
Xiang N, Guo X, Liu F, Li Q, Hu J, Brennan CS. Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea mays L.) Sprouts. Int J Mol Sci 2017; 18:ijms18061246. [PMID: 28604597 PMCID: PMC5486069 DOI: 10.3390/ijms18061246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/03/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023] Open
Abstract
Sweet corn is one of the most widely planted crops in China. Sprouting of grains is a new processes to increase the nutritional value of grain products. The present study explores the effects of light on the nutritional quality of sweet corn sprouts. Gene expression of phenolic biosynthesis, phytochemical profiles and antioxidant activity were studied. Two treatments (light and dark) were selected and the morphological structure of sweet corn sprouts, as well as their biochemical composition were investigated to determine the effects of light on the regulation of genes responsible for nutritional compounds. Transcription analyses for three key-encoding genes in the biosynthesis of the precursors of phenolic were studied. Results revealed a negative regulation in the expression of ZmPAL with total phenolic content (TPC) in the light group. TPC and total flavonoid content (TFC) increased during germination and this was correlated with an increase in antioxidant activity (r = 0.95 and 1.0). The findings illustrate that the nutritional value of sweet corn for the consumer can be improved through germination to the euphylla stage.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Fengyuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Quan Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jianguang Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China.
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Department of Wine, Food and Molecular Bioscience, Lincoln University, Canterbury 7647, New Zealand.
| |
Collapse
|