1
|
Liu J, Xie S, Xu M, Jiang X, Wang Q, Zhao H, Zhang B. Screening the Protective Agents Able to Improve the Survival of Lactic Acid Bacteria Strains Subjected to Spray Drying Using Several Key Enzymes Responsible for Carbohydrate Utilization. Microorganisms 2024; 12:1094. [PMID: 38930476 PMCID: PMC11205755 DOI: 10.3390/microorganisms12061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to identify the most effective protectants for enhancing the viability of specific lactic acid bacteria (LAB) strains (Lactobacillus delbrueckii subsp. bulgaricus CICC 6097, Lactiplantibacillus plantarum CICC 21839, Lactobacillus acidophilus NCFM) by assessing their enzymatic activity when exposed to spray drying (inlet/outlet temperature: 135 °C/90 °C). Firstly, it was found that the live cell counts of the selected LAB cells from the 10% (w/v) recovered skim milk (RSM) group remained above 107 CFU/g after spray drying. Among all the three groups (1% w/v RSM group, 10% w/v RSM group, and control group), the two enzymes pyruvate kinase (PK) and lactate dehydrogenase (LDH) were more sensitive to spray drying than hexokinase (HK) and β-galactosidase (β-GAL). Next, transcriptome data of Lb. acidophilus NCFM showed that 10% (w/v) RSM improved the down-regulated expressions of genes encoding PK (pyk) and LDH (ldh) after spray drying compared to 1% (w/v) RSM. Finally, four composite protectants were created, each consisting of 10% (w/v) RSM plus a different additive-sodium glutamate (CP-A group), sucrose (CP-B group), trehalose (CP-C group), or a combination of sodium glutamate, sucrose, and trehalose (CP-D group)-to encapsulate Lb. acidophilus NCFM. It was observed that the viable counts of strain NCFM (8.56 log CFU/g) and enzymatic activity of PK and LDH in the CP-D group were best preserved compared to the other three groups. Therefore, our study suggested that measuring the LDH and PK activity could be used as a promising tool to screen the effective spray-dried protective agent for LAB cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.X.); (M.X.); (X.J.); (Q.W.); (H.Z.)
| |
Collapse
|
2
|
Hao R, Chen Z, Wu Y, Li D, Qi B, Lin C, Zhao L, Xiao T, Zhang K, Wu J. Improving the survival of Lactobacillus plantarum FZU3013 by phase separated caseinate/alginate gel beads. Int J Biol Macromol 2024; 260:129447. [PMID: 38232889 DOI: 10.1016/j.ijbiomac.2024.129447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The phase separation behavior of mixed solution of caseinate (Cas) and alginate (Alg) was investigated. Lactobacillus plantarum FZU3013 was encapsulated using 4 % Cas/1 % Alg gel beads with a phase-separated structure. The bacteria were predominantly distributed in the Alg-rich continuous phase. The use of 4 % Cas/1 % Alg beads resulted in higher encapsulation efficiency for L. plantarum FZU3013 compared to 1 % Alg beads. After 5 weeks of storage at 4 °C, the viable count in 4 % Cas/1 % Alg beads was 8.3 log CFU/g, which was 1.1 log CFU/g higher than that of the 1 % Alg beads. When 1 % Alg beads of the smallest size were subjected to in vitro digestion, no viable bacteria could be detected at the end of the digestion, whereas the 4 % Cas/1 % Alg beads of the smallest size had a viable count of 3.9 log CFU/g. When the size of the 4 % Cas/1 % Alg beads was increased to 1000 μm, the viable count was 7.0 log CFU/g after digestion. The results of infrared spectroscopy and zeta potential indicated that hydrogen bonding and electrostatic interactions between caseinate and alginate reinforced the structure of the gel beads and improved the protection for L. plantarum FZU 3013.
Collapse
Affiliation(s)
- Ruiying Hao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiyang Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ya Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dongdong Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Binxi Qi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenxin Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lan Zhao
- College of Life Science, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Tingting Xiao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kunfeng Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
3
|
Microencapsulation of Monascus red pigments by emulsification/internal gelation with freeze/spray-drying: Process optimization, morphological characteristics, and stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Silva DR, Sardi JDCO, Pitangui NDS, Roque SM, Silva ACBD, Rosalen PL. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
7
|
Yang CH, Wang YC, Wang TC, Chang YC, Lin YC, Chen PF, Huang WJ, Wen HY, Lin YM, Kuo WS, Wang YT, Huang KS. Facile synthesis of highly tunable monodispersed calcium hydroxide composite particles by using a two-step ion exchange reaction. RSC Adv 2020; 10:13700-13707. [PMID: 35493011 PMCID: PMC9051553 DOI: 10.1039/d0ra01275k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 11/24/2022] Open
Abstract
“Calcium hydroxide [Ca(OH)2]” is a medicament frequently used for antimicrobial purposes in endodontic procedures, or it is used as a toxic-waste adsorbent in industry. Ca(OH)2 particles produced through conventional methods are size untunable and have a wide size distribution and polygonal shape. In this paper, a novel and facile approach involving template-mediated synthesis and two-step ion exchange is proposed for uniform size Ca(OH)2 composite particles generation. “Sodium-alginate (Na-alginate)” was used as a precursor, and monodisperse Na-alginate emulsions were formed through needle droplet or droplet microfluidic technology. After the first ion exchange step with the Ca2+ ions, “calcium-alginate (Ca-alginate)” particles were obtained. The Ca-alginate particles were intermediate reaction products and were designed to be the templates for ensuring the spherical shape and size of products. The OH− ions were used for the second ion exchange step to fabricate Ca(OH)2 composite particles. The results revealed that the Ca(OH)2 composite particles were size tunable, had a spherical shape, and were monodisperse (with a relative standard deviation of less than 8%). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay revealed that the Ca(OH)2 composite particles were potential biocompatible materials. The synthesized Ca(OH)2 composite particles were size tunable, had a spherical shape, and were monodisperse.![]()
Collapse
Affiliation(s)
- Chih-Hui Yang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
- Pharmacy Department of E-Da Hospital
- Taiwan
| | - Ya-Chin Wang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
| | - Ta-Chen Wang
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
- Kaohsiung City 82445
- Taiwan
| | - Yi-Ching Chang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Yun-Chul Lin
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Pei-Fan Chen
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Wei-Jie Huang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Hsin-Yi Wen
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Yu-Mei Lin
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science
- Nanjing University of Information Science and Technology
- China
| | - Yi-Ting Wang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
- Kaohsiung City 82445
- Taiwan
| |
Collapse
|
8
|
Rama GR, Kuhn D, Beux S, Maciel MJ, Volken de Souza CF. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Application of experimental design for the development of soft-capsules through a prilling, inverse gelation process. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zhao M, Wang Y, Huang X, Gaenzle M, Wu Z, Nishinari K, Yang N, Fang Y. Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. Food Funct 2018; 9:1000-1008. [PMID: 29345267 DOI: 10.1039/c7fo01802a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ambient storage of dry powdered probiotics is necessary for manufacturer's cost reduction and customer's convenience. Complex coacervation is a promising microencapsulation technique. In this work, a probiotic matrix of type-A gelatin/gum arabic/sucrose (GE/GA/S) with high coacervation pH was designed, based on the alkaline isoelectric point of type-A gelatin. Bacterial survival during ambient storage at room temperature and certain relative humidity were detected. To clarify the protection factors of the coacervation matrix of GE/GA/S, dry microcapsules of GA, GE, GE/sucrose and GE/GA were prepared as controls and compared in terms of their morphology, moisture content, dynamic vapor absorption and cell viability. Probiotics in GE/GA/S5.5 microcapsules behaved the best during spray drying, ambient storage and heat treatment. The results proved that sucrose addition was necessary for cell viability against environmental stresses, and that encapsulation by complex coacervation was a positive factor in cell protection, especially at neutral coacervation pH.
Collapse
Affiliation(s)
- Meng Zhao
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|