1
|
Wang Z, Liu X, Sun F, Jiang Q, Shang H, Zheng C. Effect of biochar and cyanobacteria crust incorporation on soil wind erosion in arid mining area under freeze-thaw action. Sci Rep 2025; 15:16363. [PMID: 40348813 PMCID: PMC12065891 DOI: 10.1038/s41598-025-96688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
The Bayan Obo mining areas of northern China's arid regions is prone to wind erosion and strong freeze-thaw effects. Freezing-thawing leads to the degradation of soil structure and diminishes its resistance to wind erosion. Cyanobacteria crusts can inhibit wind erosion, but their biomass decreases under freeze-thaw conditions. There is limited research on whether combining biochar with cyanobacteria crusts can alleviate the impact of freeze-thaw on their wind erosion resistance. Therefore, the indoor simulated freeze-thaw and wind tunnel tests were used to systematically investigate the impact of cyanobacteria crust and biochar combination on soil wind erosion under freeze-thaw action. Results showed that freeze-thaw cycles altered crust layer soil physicochemical properties. The Pearson correlation coefficient revealed that the freeze-thaw frequency exhibited a significant negative correlation with pH (p < 0.01), bulk density (p < 0.01), clay percentage (p < 0.01), and > 0.25 mm aggregate content (p < 0.05). The sensitivity of freeze-thaw cycles to clay percentage was the highest, with a coefficient of variation of 27%. The wind tunnel test showed that the combined use of biochar and cyanobacteria exhibited the most efficient erosion reduction, the erosion reduction rate peaked at a wind speed of 15 m/s, reaching an impressive 64.73%. This was primarily attributed to the high aggregate stability and clay percentage. The above results indicate the biochar and cyanobacteria crust incorporation has great potential as a wind erosion control strategy in seasonal freeze-thaw zones.
Collapse
Affiliation(s)
- Zhe Wang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xueshi Liu
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Fenghui Sun
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Qinghong Jiang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Haili Shang
- School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Chunli Zheng
- Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| |
Collapse
|
2
|
Jin L, Jin N, Wang S, Huang S, Yang X, Xu Z, Jiang S, Lyu J, Yu J. Moderate salt stress aids in the enhancement of nutritional and flavor quality in tomato ( Solanum lycopersicum L.) fruits. Food Chem X 2025; 26:102330. [PMID: 40115498 PMCID: PMC11923833 DOI: 10.1016/j.fochx.2025.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Salt stress has been found to enhance the quality of certain plants, yet its influence on fruit flavor remains largely unexplored. Our study probes the impact of salinity on the nutritional and flavor profile of tomatoes. Tomato plants were exposed to 0, 30, 50, 70, 90, and 110 mM of NaCl. Moderate salinity levels (50-70 mM) were found to boost the nutritional value of tomatoes, with increases in soluble solids, protein, and sugar levels. However, the concentration of key minerals such as K, Mg, and Mn declined with escalating salinity. Furthermore, the number of volatile compounds has increased, and the content of different types (alcohols, aldehydes, esters, etc.) has also significantly increased. Salinity stress also significantly influenced the levels of characteristic volatile compounds, especially hexanal, phenylethyl alcohol, and 6-methyl-5-hepten-2-one. Overall, these results will provide valuable strategies for producing high-quality tomatoes.
Collapse
Affiliation(s)
- Li Jin
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
| | - Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Shuyan Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| |
Collapse
|
3
|
Xie B, Xiao X, Li H, Wei S, Li J, Gao Y, Yu J. Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives ( Allium tuberosum Rottler). Foods 2023; 12:204. [PMID: 36613420 PMCID: PMC9818334 DOI: 10.3390/foods12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sodium chloride (NaCl), as a eustressor, can trigger relevant pathways to cause plants to produce a series of metabolites, thus improving the quality of crops to a certain extent. However, there are few reports on the improvement of nutrient quality and flavor of hydroponic Chinese chives (Allium tuberosum Rottler) by sodium chloride. In this study, five NaCl concentrations were used to investigate the dose-dependent effects on growth, nutritional quality and flavor in Chinese chives. The results show that 10 mM NaCl had no significant effect on the growth of Chinese chives, but significantly decreased the nitrate content by 40% compared with 0 mM NaCl treatment, and the content of soluble protein and vitamin C was increased by 3.6% and 2.1%, respectively. In addition, a total of 75 volatile compounds were identified among five treatments using headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME/GC-MS). Compared with the 0 mM NaCl treatment, 10 mM NaCl had the greatest effect on the quantity and content of volatile compounds, with the total content increased by 27.8%. Furthermore, according to the odor activity values (OAVs) and odor description, there were 14 major aroma-active compounds (OAVs > 1) in Chinese chives. The “garlic and onion” odor was the strongest among the eight categories of aromas, and its highest value was observed in the 10 mM NaCl treatment (OAVs = 794).Taken together, adding 10 mM NaCl to the nutrient solution could improve the nutritional quality and flavor of Chinese chives without affecting their normal growth.
Collapse
Affiliation(s)
- Bojie Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Haiyan Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
4
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Turner L, Lignou S, Gawthrop F, Wagstaff C. Investigating the Relationship of Genotype and Geographical Location on Volatile Composition and Sensory Profile of Celery ( Apium graveolens). Int J Mol Sci 2021; 22:ijms222112016. [PMID: 34769457 PMCID: PMC8584909 DOI: 10.3390/ijms222112016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous varieties of celery are grown in multiple countries to maintain supply, demand and availability for all seasons; thus, there is an expectation for a consistent product in terms of taste, flavour, and overall quality. Differences in climate, agronomy and soil composition will all contribute to inconsistencies. This study investigated the volatile and sensory profile of eight celery genotypes grown in the UK (2018) and Spain (2019). Headspace analysis determined the volatile composition of eight genotypes, followed by assessment of the sensory profile using a trained panel. Significant differences in the volatile composition and sensory profile were observed; genotype and geographical location both exerted influences. Two genotypes exhibited similar aroma composition and sensory profile in both locations, making them good candidates to drive breeding programmes aimed at producing varieties that consistently display these distinctive sensory properties. Celery samples harvested in the UK exhibited a higher proportion of sesquiterpenes and phthalides, whereas samples harvested in Spain expressed a higher aldehyde and ketone content. Studying the relationship between growing environment and genotype will provide information to guide growers in how to consistently produce a high-quality crop.
Collapse
Affiliation(s)
- Lucy Turner
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
- Correspondence: ; Tel.: +44-(0)118-378-8717
| | - Frances Gawthrop
- A.L. Tozer Ltd., Pyports, Downside Bridge Road, Cobham KT11 3EH, UK;
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| |
Collapse
|
6
|
Petropoulos SA, Fernandes Â, Dias MI, Pereira C, Calhelha R, Di Gioia F, Tzortzakis N, Ivanov M, Sokovic M, Barros L, Ferreira ICFR. Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants (Basel) 2020; 9:antiox9040314. [PMID: 32326524 PMCID: PMC7222212 DOI: 10.3390/antiox9040314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Centaurea raphanina subsp. mixta (DC.) Runemark is a wild edible species endemic to Greece. This study evaluated the chemical composition and bioactive properties of wild and cultivated C. raphanina subsp. mixta plants. Wild plants had higher nutritional value than cultivated ones, whereas cultivated plants contained more tocopherols. Glucose and sucrose were higher in cultivated plants and trehalose in wild ones. Oxalic and total organic acids were detected in higher amounts in cultivated samples. The main fatty acids were α-linolenic, linoleic and palmitic acid, while wild plants were richer in polyunsaturated fatty acids. Two pinocembrin derivatives were the main phenolic compounds being detected in higher amounts in wild plants. Regarding the antioxidant activity, wild and cultivated plants were more effective in the oxidative haemolysis (OxHLIA) and thiobarbituric acid reactive substances (TBARS) assays, respectively. Moreover, both extracts showed moderate cytotoxicity in non-tumor cell lines (PLP2), while cultivated plants were more effective against cervical carcinoma (HeLa), breast carcinoma (MCF-7) and non-small lung cancer (NCI-H460) cell lines. Finally, wild plants showed higher antimicrobial activity than cultivated plants against specific pathogens. In conclusion, the cultivation of C.raphanina subsp. mixta showed promising results in terms of tocopherols content and antiproliferative effects, however further research is needed to decrease oxalic acid content.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 N. Ionia, Greece
- Correspondence: (S.A.P.); (I.C.F.R.F.); Tel.: +30-2421-093-196 (S.A.P.); +351-273-330-904 (I.C.F.R.F.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Maria Ines Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA;
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Marija Ivanov
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.I.); (M.S.)
| | - Marina Sokovic
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.I.); (M.S.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
- Correspondence: (S.A.P.); (I.C.F.R.F.); Tel.: +30-2421-093-196 (S.A.P.); +351-273-330-904 (I.C.F.R.F.)
| |
Collapse
|
7
|
Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain. SUSTAINABILITY 2019. [DOI: 10.3390/su11174564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brackish water used for irrigation can restrict crop growth and lead to environmental problems. The alternate irrigation with saline water at different growth stages is still not well understood. Therefore, field trials were conducted during 2015–2018 in the NCP to investigate whether alternate irrigation is practicable for winter wheat production. The treatments comprised rain-fed cultivation (NI), fresh and saline water irrigation (FS), saline and fresh water irrigation (SF), saline water irrigation (SS) and fresh water irrigation (FF). The results showed that the grain yield was increased by 20% under SF and FS treatments compared to NI, while a minor decrease of 2% in grain yield was observed compared with FF treatment. The increased soil salinity and risk of long-term salt accumulation in the soil due to alternate irrigation during peak dry periods was insignificant due to leaching of salts from crop root zone during monsoon season. Although Na+ concentration in the leaves increased with saline irrigation, resulting in significantly lower K+:Na+ ratio in the leaves, the Na+ and K+ concentrations in the roots and grains were not affected. In conclusion, the alternate irrigation for winter wheat is a most promising option to harvest more yield and save fresh water resources.
Collapse
|
8
|
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S, Terzano R, Cesco S. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:923. [PMID: 31396245 PMCID: PMC6668597 DOI: 10.3389/fpls.2019.00923] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/01/2019] [Indexed: 05/19/2023]
Abstract
Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process. In particular, this review provides information (1) on the processes and mechanisms occurring in the hydroponic solutions that ensure an adequate nutrient concentration and thus an optimal nutrient acquisition without leading to nutritional disorders influencing ultimately also crop quality (e.g., solubilization/precipitation of nutrients/elements in the hydroponic solution, substrate specificity in the nutrient uptake process, nutrient competition/antagonism and interactions among nutrients); (2) on new emerging technologies that might improve the management of soilless cropping systems such as the use of nanoparticles and beneficial microorganism like plant growth-promoting rhizobacteria (PGPRs); (3) on tools (multi-element sensors and interpretation algorithms based on machine learning logics to analyze such data) that might be exploited in a smart agriculture approach to monitor the availability of nutrients/elements in the hydroponic solution and to modify its composition in realtime. These aspects are discussed considering what has been recently demonstrated at the scientific level and applied in the industrial context.
Collapse
Affiliation(s)
- Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Andrea Giro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guido Orzes
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabrizio Mazzetto
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
9
|
Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:31-38. [PMID: 30059606 DOI: 10.1111/plb.12884] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 05/18/2023]
Abstract
Thirty crop species provide 90% of our food, most of which display severe yield losses under moderate salinity. Securing and augmenting agricultural yield in times of global warming and population increase is urgent and should, aside from ameliorating saline soils, include attempts to increase crop plant salt tolerance. This short review provides an overview of the processes that limit growth and yield in saline conditions. Yield is reduced if soil salinity surpasses crop-specific thresholds, with cotton, barley and sugar beet being highly tolerant, while sweet potato, wheat and maize display high sensitivity. Apart from Na+ , also Cl- , Mg2+ , SO4 2- or HCO3 - contribute to salt toxicity. The inhibition of biochemical or physiological processes cause imbalance in metabolism and cell signalling and enhance the production of reactive oxygen species interfering with cell redox and energy state. Plant development and root patterning is disturbed, and this response depends on redox and reactive oxygen species signalling, calcium and plant hormones. The interlink of the physiological understanding of tolerance processes from molecular processes as well as the agronomical techniques for stabilizing growth and yield and their interlinks might help improving our crops for future demand and will provide improvement for cultivating crops in saline environment.
Collapse
Affiliation(s)
- C Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - C-M Geilfus
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Division of Controlled Environment Horticulture, Humboldt Universität Berlin, Berlin, Germany
| | - K-J Dietz
- Biochemistry and Physiology of Plants, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
10
|
Di Gioia F, Rosskopf EN, Leonardi C, Giuffrida F. Effects of application timing of saline irrigation water on broccoli production and quality. AGRICULTURAL WATER MANAGEMENT 2018; 203:97-104. [PMID: 0 DOI: 10.1016/j.agwat.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
11
|
Rouphael Y, Petropoulos SA, Cardarelli M, Colla G. Salinity as eustressor for enhancing quality of vegetables. SCIENTIA HORTICULTURAE 2018; 234:361-369. [PMID: 0 DOI: 10.1016/j.scienta.2018.02.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
12
|
Rouphael Y, Kyriacou MC. Enhancing Quality of Fresh Vegetables Through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. FRONTIERS IN PLANT SCIENCE 2018; 9:1254. [PMID: 30186305 PMCID: PMC6113394 DOI: 10.3389/fpls.2018.01254] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/07/2018] [Indexed: 05/15/2023]
Abstract
Closed soilless cultivation systems (SCS) support high productivity and optimized year-round production of standardized quality. Efficiency and precision in modulating nutrient solution composition, in addition to controlling temperature, light, and atmospheric composition, renders protected SCS instrumental for augmenting organoleptic and bioactive components of quality. Effective application of eustress (positive stress), such as moderate salinity or nutritional stress, can elicit tailored plant responses involving the activation of physiological and molecular mechanisms and the strategic accumulation of bioactive compounds necessary for adaptation to suboptimal environments. For instance, it has been demonstrated that the application of salinity eustress increases non-structural carbohydrates and health-promoting phytochemicals such as lycopene, β-carotene, vitamin C, and the overall phenolic content of tomato fruits. Salinity eustress can also reduce the concentration of anti-nutrient compounds such as nitrate due to antagonism between nitrate and chloride for the same anion channel. Furthermore, SCS can be instrumental for the biofortification of vegetables with micronutrients essential or beneficial to human health, such as iodine, iron, selenium, silicon, and zinc. Accurate control of microelement concentrations and constant exposure of roots to the fortified nutrient solution without soil interaction can maximize their uptake, translocation, and accumulation in the edible plant parts; however, biofortification remains highly dependent on microelement forms and concentrations present in the nutrient solution, the time of application and the accumulation capacity of the selected species. The present article provides an updated overview and future perspective on scientific advances in SCS aimed at enhancing the sensory and bioactive value of vegetables.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Youssef Rouphael, Marios C. Kyriacou,
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
- *Correspondence: Youssef Rouphael, Marios C. Kyriacou,
| |
Collapse
|
13
|
Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. HORTICULTURAE 2017. [DOI: 10.3390/horticulturae3020030] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|