1
|
Gorgia P, Tsikou D. Tripartite Symbiosis Between Legumes, Arbuscular Mycorrhizal Fungi and Nitrogen Fixing Rhizobia: Interactions and Regulation. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39748268 DOI: 10.1111/pce.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters. In this review we examine the current state of research on the legume-rhizobium-AMF tripartite symbiosis. We investigate the dynamic interaction between the two microsymbionts and the effect of one microbe on the other, both at the physiological and the molecular levels, and the result of dual inoculation on host plant growth, fitness and response to stresses. Rhizobia and AMF interact both extraradically and intraradically, effects on microbe and host plant gene expression levels are observed, AMF positively regulates nodulation, while rhizobia can affect AMF root colonisation either positively or negatively. Factors observed to regulate the establishment and function of the tripartite symbiosis, such as the rhizobia-AMF combination, host plant identity and environmental conditions are discussed.
Collapse
Affiliation(s)
- Polyxeni Gorgia
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Endes A, Yones AM, Atmaca S, Tahir M, Kayim M. Resistance of Ascochyta rabiei isolates from chickpeas ( Cicer arietinum L.) to fungicides. Heliyon 2024; 10:e35795. [PMID: 39170508 PMCID: PMC11337017 DOI: 10.1016/j.heliyon.2024.e35795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Ascochyta blight is a disease that causes significant yield losses in chickpea crops in Turkey under favorable environmental conditions. The fungal pathogen Ascochyta rabiei is the causative agent of this disease. The antifungal activity of previous fungicides against A. rabiei was not effective due to the heterothallic nature of the fungus. The aim of this study was to determine the sensitivity of A. rabiei to fungicides (25.2 g kg-1 boscalid + 12.8 g kg-1 pyraclostrobin; 50 % tebuconazole + 25 % trifloxystrobin; 62.5 g L-1 propiconazole + 37.5 g L-1 azoxystrobin; 80 % thiram; 80 % kükürt (sulphur); 80 % mancozeb; 80 % maneb) under in vitro and field conditions. Pure cultures of A. rabiei were isolated from infected chickpea plants collected in Boğazlayan, Sarıkaya, Sorgun, Merkez and Yerköy. A total of 14 A. rabiei isolates and 4 references were evaluated. The field test was conducted at Yozgat Bozok University, Yerköy Agricultural Application and Research Center Station. The trials began on March 14, 2021. The experimental area was divided into plots and the susceptible chickpea variety Sarı98 was used for the study. Two artificial inoculations were carried out approximately on the 40th and 80th days after sowing. Twenty-four hours after inoculation, the chickpea plants were sprayed with the fungicides Nativo® WG 75, Bellis®, Dikotan® M45 and Thiovit Jet® using a handheld sprayer. In vitro testing revealed that A. rabiei was resistant to kükürt (sulphur), thiram, maneb, and mancozeb. A field study showed that the percentage of A. rabiei isolates treated with the mancozeb fungicide was between 14 and 21 % of the control. Therefore, effective disease management strategies should include not only the use of fungicides, but also alternative approaches such as the use of resistant varieties. Moreover, the study focused on phenotypic resistance and suggests that future research should investigate the genetic and molecular mechanisms underlying A. rabiei resistance to enable better resistance management.
Collapse
Affiliation(s)
- Ali Endes
- Department of Plant Protection, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Turkey
| | - Amin Mohammed Yones
- Department of Horticultural Sciences, College of Agriculture, Oda Bultum University, P.O. Box 226, Chiro, Ethiopia
| | - Sevim Atmaca
- Department of Plant Protection, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Turkey
| | - Muhidin Tahir
- Department of Biology, College of Natural and Computational Sciences, Oda Bultum University, P.O. Box 226, Chiro, Ethiopia
| | - Mukaddes Kayim
- Department of Plant Protection, Faculty of Agriculture, Çukurova University, Sarıçam, Adana, Turkey
| |
Collapse
|
3
|
Abdullaeva Y, Mardonova G, Eshboev F, Cardinale M, Egamberdieva D. Harnessing chickpea bacterial endophytes for improved plant health and fitness. AIMS Microbiol 2024; 10:489-506. [PMID: 39219751 PMCID: PMC11362273 DOI: 10.3934/microbiol.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Endophytic bacteria live asymptomatically inside the tissues of host plants without inflicting any damage. Endophytes can confer several beneficial traits to plants, which can contribute to their growth, development, and overall health. They have been found to stimulate plant growth by enhancing nutrient uptake and availability. They can produce plant growth-promoting substances such as auxins, cytokinins, and gibberellins, which regulate various aspects of plant growth and development. Endophytes can also improve root system architecture, leading to increased nutrient and water absorption. Some endophytes possess the ability to solubilize nutrients, such as phosphorus and potassium, making them more available for plant uptake, and fixing atmospheric nitrogen. Chickpea (Cicer arietinum) is a major legume crop that has mutualistic interactions with endophytes. These endophytes can benefit the chickpea plant in various ways, including higher growth, improved nutrient uptake, increased tolerance to abiotic and biotic stressors, and disease suppression. They can produce enzymes and metabolites that scavenge harmful reactive oxygen species, thus reducing oxidative stress. Moreover, several studies reported that endophytes produce antimicrobial compounds, lytic enzymes, and volatile organic compounds that inhibit the growth of fungal pathogens and trigger systemic defense responses in plants, leading to increased resistance against a broad range of pathogens. They can activate plant defense pathways, including the production of defense-related enzymes, phytoalexins, and pathogenesis-related proteins, thereby providing long-lasting protection. It is important to note that the diversity and function of chickpea-associated endophytes can vary depending on factors such as variety, geographical location, and environmental conditions. The mechanisms behind the plant-beneficial interactions are still being intensively explored. In this review, new biotechnologies in agricultural production and ecosystem stability were presented. Thus, harnessing chickpea endophytes could be exploited in developing drought-resistant cultivars that can maintain productivity in arid and semi-arid environments, crucial for meeting the global demand for chickpeas.
Collapse
Affiliation(s)
- Yulduzkhon Abdullaeva
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Gulsanam Mardonova
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Farkhod Eshboev
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Tashkent 100170, Uzbekistan
- Institute of Fundamental and Applied Research, National University of Uzbekistan TIIAME, Tashkent 100000, Uzbekistan
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies–DiSTeBA, University of Salento, Lecce, Italy
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National University of Uzbekistan TIIAME, Tashkent 100000, Uzbekistan
| |
Collapse
|
4
|
Zhang J, Wang J, Zhu C, Singh RP, Chen W. Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:429. [PMID: 38337962 PMCID: PMC10856887 DOI: 10.3390/plants13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Chickpea (Cicer arietinum L.), encompassing the desi and kabuli varieties, is a beloved pulse crop globally. Its cultivation spans over fifty countries, from the Indian subcontinent and southern Europe to the Middle East, North Africa, the Americas, Australia, and China. With a rich composition of carbohydrates and protein, constituting 80% of its dry seed mass, chickpea is also touted for its numerous health benefits, earning it the title of a 'functional food'. In the past two decades, research has extensively explored the rhizobial diversity associated with chickpea and its breeding in various countries across Europe, Asia, and Oceania, aiming to understand its impact on the sustainable yield and quality of chickpea crops. To date, four notable species of Mesorhizobium-M. ciceri, M. mediterraneum, M. muleiense, and M. wenxiniae-have been reported, originally isolated from chickpea root nodules. Other species, such as M. amorphae, M. loti, M. tianshanense, M. oportunistum, M. abyssinicae, and M. shonense, have been identified as potential symbionts of chickpea, possibly acquiring symbiotic genes through lateral gene transfer. While M. ciceri and M. mediterraneum are widely distributed and studied across chickpea-growing regions, they remain absent in China, where M. muleiense and M. wenxiniae are the sole rhizobial species associated with chickpea. The geographic distribution of chickpea rhizobia is believed to be influenced by factors such as genetic characteristics, competitiveness, evolutionary adaptation to local soil conditions, and compatibility with native soil microbes. Inoculating chickpea with suitable rhizobial strains is crucial when introducing the crop to new regions lacking indigenous chickpea rhizobia. The introduction of a novel chickpea variety, coupled with the effective use of rhizobia for inoculation, offers the potential not only to boost the yield and seed quality of chickpeas, but also to enhance crop productivity within rotation and intercropped systems involving chickpea and other crops. Consequently, this advancement holds the promise to drive forward the cause of sustainable agriculture on a global scale.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.W.); (C.Z.)
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.W.); (C.Z.)
| | - Cancan Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (J.W.); (C.Z.)
| | - Raghvendra Pratap Singh
- Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun 248007, India;
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Berrios L, Yeam J, Holm L, Robinson W, Pellitier PT, Chin ML, Henkel TW, Peay KG. Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth. Curr Biol 2023:S0960-9822(23)00760-1. [PMID: 37369208 DOI: 10.1016/j.cub.2023.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jay Yeam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wallis Robinson
- Forestry and Forest Health Program, University of California Cooperative Extension Humboldt and Del Norte Counties, Eureka, CA 95503, USA
| | | | - Mei Lin Chin
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Terry W Henkel
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Foresto E, Carezzano ME, Giordano W, Bogino P. Ascochyta Blight in Chickpea: An Update. J Fungi (Basel) 2023; 9:jof9020203. [PMID: 36836317 PMCID: PMC9960938 DOI: 10.3390/jof9020203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chickpea (Cicer arietinum L.), one of the most cultivated legumes worldwide, is crucial for the economy of several countries and a valuable source of nutrients. Yields may be severely affected by Ascochyta blight, a disease caused by the fungus Ascochyta rabiei. Molecular and pathological studies have not yet managed to establish its pathogenesis, since it is highly variable. Similarly, much remains to be elucidated about plant defense mechanisms against the pathogen. Further knowledge of these two aspects is fundamental for the development of tools and strategies to protect the crop. This review summarizes up-to-date information on the disease's pathogenesis, symptomatology, and geographical distribution, as well as on the environmental factors that favor infection, host defense mechanisms, and resistant chickpea genotypes. It also outlines existing practices for integrated blight management.
Collapse
Affiliation(s)
- Emiliano Foresto
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina
| | - María Evangelina Carezzano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina
- Correspondence: (W.G.); (P.B.); Tel.: +54-0358-4676 (ext. 114) (W.G.); Fax: +54-0358-4676 (ext. 232) (P.B.)
| | - Pablo Bogino
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina
- Correspondence: (W.G.); (P.B.); Tel.: +54-0358-4676 (ext. 114) (W.G.); Fax: +54-0358-4676 (ext. 232) (P.B.)
| |
Collapse
|
7
|
Paravar A, Piri R, Balouchi H, Ma Y. Microbial seed coating: An attractive tool for sustainable agriculture. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00781. [PMID: 36655147 PMCID: PMC9841043 DOI: 10.1016/j.btre.2023.e00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Ramin Piri
- Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran, Tehran, Iran
| | - Hamidreza Balouchi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran,Corresponding authors.
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China,Corresponding authors.
| |
Collapse
|
8
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
9
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
10
|
Laranjeira SS, Alves IG, Marques G. Chickpea (Cicer arietinum L.) Seeds as a Reservoir of Endophytic Plant Growth-Promoting Bacteria. Curr Microbiol 2022; 79:277. [PMID: 35907956 DOI: 10.1007/s00284-022-02942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
The seed microbiome, the primary source of inoculum for plants, may play an important role in plant growth, health and productivity. However, the structure and function of chickpea seed endophytes are poorly characterized. Bacteria with beneficial characteristics can be selected by the plant and transmitted vertically via the seed to benefit the next generation. Studying the diversity and multifunctionality of seed microbial communities can provide innovative opportunities in the field of plant-microbe interaction. This study aimed to isolate, identify and characterize culturable endophytic bacteria from chickpea (Cicer arietinum L.) seeds. Phylogenetic analysis based on 16S rDNA showed that the endophytic bacteria belong to the genera Mesorhizobium, Burkholderia, Bacillus, Priestia, Paenibacillus, Alcaligenes, Acinetobacter, Rahnella, Enterobacter, Tsukamurella, and Microbacterium. The most frequently observed genus was Bacillus; however, rhizobia typically associated with chickpea roots were also found, which is a novel finding of this study. Siderophore production and phosphorus solubilization were the most widespread plant growth-promoting features, while hydrogen cyanide production was relatively rare among the isolates. Most of the isolates possess two or more plant growth-promoting features; however, only Bacillus thuringiensis Y2B, a well-known entomopathogenic bacteria, exhibited the presence of all plant growth-promoting traits evaluated. Results suggest that endophytic bacteria such as Bacillus, Mesorhizobium, and Burkholderia may be vertically transferred from inoculated plants to seeds to benefit the next generation.
Collapse
Affiliation(s)
- Sara S Laranjeira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Isabel G Alves
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Guilhermina Marques
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
11
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Shi C, Song W, Gao J, Yan S, Guo C, Zhang T. Enhanced production of cordycepic acid from Cordyceps cicadae isolated from a wild environment. Braz J Microbiol 2022; 53:673-688. [PMID: 35122655 PMCID: PMC9151976 DOI: 10.1007/s42770-022-00687-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cordyceps acid is an active component of Cordyceps cicadae and has a variety of medicinal uses, including anti-tumor effects, the prevention of cerebral hemorrhaging and myocardial infarction, and the inhibition of a wide range of bacteria. The objectives of this study were to identify C. cicadae fungi and optimize the culture conditions to obtain a high yield of cordycepic acid. First, a wild C. cicadae was identified by morphological observation and rDNA sequence analysis. Secondly, the optimal fermentation conditions were determined using a single-factor method, a Plackett-Burman design, and a Box-Behnken response surface. Finally, using the yield of fruit bodies and the content of cordyceps acid as indices, combined with a single-factor experiment and a response surface design, the best combination of conditions for cultivation was determined. The results showed that the best combination was as follows: sucrose 2%, tryptone 2%, KH2PO4 0.4%, MgSO4·7H2O 0.4%, an initial pH of the fermentation liquid of 7.0, 5% inoculum, fermentation for 4.5 d, a ratio of medium to liquid of 1:1.7, illumination intensity 150 Lux, illumination time 15 h per day, and 70% humidity. The content of cordycepic acid in the fruiting bodies developed in cultivation was 2.07-fold higher than that in the wild C. cicadae. This study provides a theoretical basis for the large-scale cultivation of C. cicadae with a high concentration of cordycepic acid.
Collapse
Affiliation(s)
- Cuie Shi
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Wenlong Song
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jian Gao
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Shoubao Yan
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China.
| | - Chen Guo
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Tengfei Zhang
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| |
Collapse
|
13
|
Oliveira TC, Cabral JSR, Santana LR, Tavares GG, Santos LDS, Paim TP, Müller C, Silva FG, Costa AC, Souchie EL, Mendes GC. The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Sci Rep 2022; 12:9044. [PMID: 35641544 PMCID: PMC9156723 DOI: 10.1038/s41598-022-13059-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Soybean (Glycine max L.) is an economically important crop, and is cultivated worldwide, although increasingly long periods of drought have reduced the productivity of this plant. Research has shown that inoculation with arbuscular mycorrhizal fungi (AMF) provides a potential alternative strategy for the mitigation of drought stress. In the present study, we measured the physiological and morphological performance of two soybean cultivars in symbiosis with Rhizophagus clarus that were subjected to drought stress (DS). The soybean cultivars Anta82 and Desafio were grown in pots inoculated with R. clarus. Drought stress was imposed at the V3 development stage and maintained for 7 days. A control group, with well-irrigated plants and no AMF, was established simultaneously in the greenhouse. The mycorrhizal colonization rate, and the physiological, morphological, and nutritional traits of the plants were recorded at days 3 and 7 after drought stress conditions were implemented. The Anta82 cultivar presented the highest percentage of AMF colonization, and N and K in the leaves, whereas the DS group of the Desafio cultivar had the highest water potential and water use efficiency, and the DS + AMF group had thermal dissipation that permitted higher values of Fv/Fm, A, and plant height. The results of the principal components analysis demonstrated that both cultivars inoculated with AMF performed similarly under DS to the well-watered plants. These findings indicate that AMF permitted the plant to reduce the impairment of growth and physiological traits caused by drought conditions.
Collapse
Affiliation(s)
- Thales Caetano Oliveira
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Juliana Silva Rodrigues Cabral
- Faculty of Agronomy, Universidade de Rio Verde, Fazenda Fontes do Saber-Campus Universitário, P.O Box 104, Rio Verde, GO, 75901-970, Brazil
| | - Leticia Rezende Santana
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Germanna Gouveia Tavares
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Luan Dionísio Silva Santos
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Tiago Prado Paim
- Laboratory of Education in Agriculture Production, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Tissue and Culture, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Edson Luiz Souchie
- Agricultural Microbiology Laboratory, Instituto Federal Goiano-Campus Rio Verde, P.O. Box 66, Rio Verde, GO, 75901-970, Brazil
| | - Giselle Camargo Mendes
- Laboratory of Biotechnology, Instituto Federal de Santa Catarina-Campus Lages, Lages, SC, 88506-400, Brazil.
| |
Collapse
|
14
|
Souza-Alonso P, Rocha M, Rocha I, Ma Y, Freitas H, Oliveira RS. Encapsulation of Pseudomonas libanensis in alginate beads to sustain bacterial viability and inoculation of Vigna unguiculata under drought stress. 3 Biotech 2021; 11:293. [PMID: 34136330 PMCID: PMC8144263 DOI: 10.1007/s13205-021-02818-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Conventional agricultural practices based on the application of synthetic fertilizers are increasingly considered as unsustainable. Under a forecasted scenario of drought for the next decades, there is a global demand for innovative and sustainable approaches to ameliorate plant performance. Here, encapsulating beneficial microbes (BMs) to promote plant growth is gaining attention. This study evaluates bacterial encapsulation using polymeric beads of alginate, testing the survival of Pseudomonas libanensis TR1 stored up to 90 days. Produced beads were subjected to different treatments (fresh, air-dried and pulverized), which resulted in a variable size range (1200-860 µm). After storage, bacterial viability was maintained, and air-dried beads displayed a higher number of colony-forming units (2 × 107). Then, a glasshouse experiment investigated the drought resistance (plant growth, biomass, and photosynthetic responses) of Vigna unguiculata plants inoculated with these alginate beads. After 10 days of complete water restriction, turgidity and relative water content of V. unguiculata were still high under drought stress (> 80%). Leaf and root growth and biomass did not evidence significant changes after water restriction even after P. libanensis inoculation. Plant photosynthetic parameters (stomatal conductance, net photosynthetic rate, leaf CO2 concentration, or F v'/F m') were slightly affected due to inoculation but the level of stress-induced minimal plant responses. In our experiment, water restriction might have been insufficient to downregulate photosynthetic efficiency and reduce plant growth, limiting our understanding of the role of P. libanensis inoculation in alleviating drought stress in V. unguiculata, but highlighting the important relationship between the stress level and agricultural benefits of using encapsulated BMs.
Collapse
Affiliation(s)
- Pablo Souza-Alonso
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Soil Science and Agricultural Chemistry, Escuela Politécnica Superior, University of Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Miguel Rocha
- Department of Environmental Health, School of Health, Research Centre for Health and the Environment, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Inês Rocha
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ying Ma
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Helena Freitas
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui S. Oliveira
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
15
|
Afkhami ME, Almeida BK, Hernandez DJ, Kiesewetter KN, Revillini DP. Tripartite mutualisms as models for understanding plant-microbial interactions. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:28-36. [PMID: 32247158 DOI: 10.1016/j.pbi.2020.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
All plants host diverse microbial assemblages that shape plant health, productivity, and function. While some microbial effects are attributable to particular symbionts, interactions among plant-associated microbes can nonadditively affect plant fitness and traits in ways that cannot be predicted from pairwise interactions. Recent research into tripartite plant-microbe mutualisms has provided crucial insight into this nonadditivity and the mechanisms underlying plant interactions with multiple microbes. Here, we discuss how interactions among microbial mutualists affect plant performance, highlight consequences of biotic and abiotic context-dependency for nonadditive outcomes, and summarize burgeoning efforts to determine the molecular bases of how plants regulate establishment, resource exchange, and maintenance of tripartite interactions. We conclude with four goals for future tripartite studies that will advance our overall understanding of complex plant-microbial interactions.
Collapse
Affiliation(s)
- Michelle E Afkhami
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA.
| | - Brianna K Almeida
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA
| | | | | | | |
Collapse
|
16
|
Delivery of Inoculum of Rhizophagus irregularis via Seed Coating in Combination with Pseudomonas libanensis for Cowpea Production. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9010033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cowpea (Vigna unguiculata L. Walp) is an important legume grown primarily in semi-arid area. Its production is generally inhibited by various abiotic and biotic stresses. The use of beneficial microorganisms (e.g., plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF)) can enhance agricultural production, as these microorganisms can improve soil fertility and plant tolerance to environmental stresses, thus enhancing crop yield in an eco-friendly manner. Application of PGPB and AMF in large scale agriculture needs to be improved. Thus, the use of seed coating could be an efficient mechanism for placement of inocula into soils. The aim of this study was to evaluate the effects of the AMF Rhizophagus irregularis BEG140 and the PGPB Pseudomonas libanensis TR1 alone or in combination on the biomass and physiological traits of cowpea. Four treatments were set: (i) non-inoculated control; (ii) PGPB; (iii) AMF applied via seed coating; and (iv) PGPB + AMF applied via seed coating. Cowpea plants inoculated via seed coating with R. irregularis and those inoculated with R. irregularis + P. libanensis showed root mycorrhizal colonization of 21.7% and 24.2%, respectively. PGPB P. libanensis was efficient in enhancing plant biomass and seed yield. There was no benefit of single (AMF) or dual (PGPB + AMF) inoculation on plant growth or seed yield. The application of beneficial soil microorganisms can be a viable approach for sustainable cowpea production in precision agriculture scenarios.
Collapse
|
17
|
Wille L, Messmer MM, Studer B, Hohmann P. Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. PLANT, CELL & ENVIRONMENT 2019; 42:20-40. [PMID: 29645277 DOI: 10.1111/pce.13214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Root and foot diseases severely impede grain legume cultivation worldwide. Breeding lines with resistance against individual pathogens exist, but these resistances are often overcome by the interaction of multiple pathogens in field situations. Novel tools allow to decipher plant-microbiome interactions in unprecedented detail and provide insights into resistance mechanisms that consider both simultaneous attacks of various pathogens and the interplay with beneficial microbes. Although it has become clear that plant-associated microbes play a key role in plant health, a systematic picture of how and to what extent plants can shape their own detrimental or beneficial microbiome remains to be drawn. There is increasing evidence for the existence of genetic variation in the regulation of plant-microbe interactions that can be exploited by plant breeders. We propose to consider the entire plant holobiont in resistance breeding strategies in order to unravel hidden parts of complex defence mechanisms. This review summarizes (a) the current knowledge of resistance against soil-borne pathogens in grain legumes, (b) evidence for genetic variation for rhizosphere-related traits, (c) the role of root exudation in microbe-mediated disease resistance and elaborates (d) how these traits can be incorporated in resistance breeding programmes.
Collapse
Affiliation(s)
- Lukas Wille
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, 8092, Zurich, Switzerland
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, 8092, Zurich, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| |
Collapse
|
18
|
Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:1357. [PMID: 31781135 PMCID: PMC6852281 DOI: 10.3389/fpls.2019.01357] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 05/21/2023]
Abstract
Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, rhizobia, arbuscular mycorrhizal fungi, and Trichoderma, can reduce the use of agrochemicals and increase plant yield, nutrition, and tolerance to biotic-abiotic stresses. Yet, large-scale applications of PBM have been hampered by the high amounts of inoculum per plant or per cultivation area needed for successful colonization and consequently the economic feasibility. Seed coating, a process that consists in covering seeds with low amounts of exogenous materials, is gaining attention as an efficient delivery system for PBM. Microbial seed coating comprises the use of a binder, in some cases a filler, mixed with inocula, and can be done using simple mixing equipment (e.g., cement mixer) or more specialized/sophisticated apparatus (e.g., fluidized bed). Binders/fillers can be used to extend microbial survival. The most reported types of seed coating are seed dressing, film coating, and pelleting. Tested in more than 50 plant species with seeds of different dimensions, forms, textures, and germination types (e.g., cereals, vegetables, fruits, pulses, and other legumes), seed coating has been studied using various species of plant growth-promoting bacteria, rhizobia, Trichoderma, and to a lesser extent mycorrhizal fungi. Most of the studies regarding PBM applied via seed coating are aimed at promoting crop growth, yield, and crop protection against pathogens. Studies have shown that coating seeds with PBM can assist crops in improving seedling establishment and germination or achieving high yields and food quality, under reduced chemical fertilization. The right combination of biological control agents applied via seed coating can be a powerful tool against a wide number of diseases and pathogens. Less frequently, studies report seed coating being used for adaptation and protection of crops under abiotic stresses. Notwithstanding the promising results, there are still challenges mainly related with the scaling up from the laboratory to the field and proper formulation, including efficient microbial combinations and coating materials that can result in extended shelf-life of both seeds and coated PBM. These limitations need to be addressed and overcome in order to allow a wider use of seed coating as a cost-effective delivery method for PBM in sustainable agricultural systems.
Collapse
Affiliation(s)
- Inês Rocha
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: Inês Rocha,
| | - Ying Ma
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pablo Souza-Alonso
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miroslav Vosátka
- Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech Republic, Pru˚honice, Czechia
| | - Helena Freitas
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Rosa E. Enhancing legume growing through sustainable cropping for protein supply. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4271-4272. [PMID: 28895179 DOI: 10.1002/jsfa.8569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade of Trás-os-Montes and Alto Douro
| |
Collapse
|