1
|
Li L, Jin Z, Wang C, Wang YC. Valorization of Food Waste: Utilizing Natural Porous Materials Derived from Pomelo-Peel Biomass to Develop Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37806-37817. [PMID: 38988002 DOI: 10.1021/acsami.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Food waste is an enormous challenge, with implications for the environment, society, and economy. Every year around the world, 1.3 billion tons of food are wasted or lost, and food waste-associated costs are around $2.6 trillion. Waste upcycling has been shown to mitigate these negative impacts. This study's optimized pomelo-peel biomass-derived porous material-based triboelectric nanogenerator (PP-TENG) had an open circuit voltage of 58 V and a peak power density of 254.8 mW/m2. As porous structures enable such triboelectric devices to respond sensitively to external mechanical stimuli, we tested our optimized PP-TENG's ability to serve as a self-powered sensor of biomechanical motions. As well as successfully harvesting sufficient mechanical energy to power light-emitting diodes and portable electronics, our PP-TENGs successfully monitored joint motions, neck movements, and gait patterns, suggesting their strong potential for use in healthcare monitoring and physical rehabilitation, among other applications. As such, the present work opens up various new possibilities for transforming a prolific type of food waste into value-added products and thus could enhance long-term sustainability while reducing such waste.
Collapse
Affiliation(s)
- Longwen Li
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chenxin Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Da T, Chen T. Optimization of experimental factors on iodate adsorption: a case study of pomelo peel. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07312-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Wu L, Zhang G, Lin J. The Physiochemical Properties and Adsorption Characteristics of Processed Pomelo Peel as a Carrier for Epigallocatechin-3-Gallate. Molecules 2020; 25:molecules25184249. [PMID: 32947902 PMCID: PMC7571172 DOI: 10.3390/molecules25184249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
The NaOH-HCl- and ethanol-pretreated pomelo peel samples were prepared to apply to the batch adsorption for epigallocatechin-3-gallate (EGCG). The characteristics of peel samples were determined by Fourier transform infrared spectroscopy, scanning electron microscopy and a laser particle analyzer. The results of the physiochemical properties of the peel samples demonstrate that these peel samples have a promising adsorption capacity for EGCG, because of the increased potential binding sites on the surface compared with those of untreated peel samples. These two peel samples showed enhanced adsorption capacities of EGCG compared with that of unmodified peel in terms of the isothermal adsorption process, which could be described by both Langmuir and Freundlich models, with the theoretical maximum adsorption capacity of 77.52 and 94.34 mg g−1 for the NaOH-HCl and ethanol-treated peel samples, respectively. The adsorption kinetics demonstrated an excellent fitness to pseudo-second-order, showing that chemisorption was the rate-limiting step. The thermodynamics analysis revealed that the adsorption reaction was a spontaneous and endothermic process. This work highlights that the processed pomelo peels have outstanding adsorption capacities for EGCG, which could be promising candidates for EGCG delivering in functional food application.
Collapse
Affiliation(s)
- Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (G.Z.)
| | - Guoying Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (G.Z.)
| | - Jinke Lin
- College of Anxi Tea, Fujian Agriculture and Forestry University, Quanzhou 362406, China
- Correspondence:
| |
Collapse
|
4
|
Wang J, Zhang M, Zhou R, Li J, Zhao W, Zhou J. Adsorption characteristics and mechanism of norfloxacin in water by γ-Fe 2O 3@BC. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:242-254. [PMID: 32941166 DOI: 10.2166/wst.2020.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using waste pomelo peel as raw material, pomelo peel-based biochar (BC) was prepared by pyrolysis at 400 °C, and the pomelo peel-based biochar was prepared by loading γ-Fe2O3 onto the surface of the pomelo peel-based biochar by unlimited oxygen chemical precipitation. The results showed that the pomelo peel biochar loaded with γ-Fe2O3 had higher specific surface area and larger pore volume. The load of γ-Fe2O3 gives γ-Fe2O3@BC excellent magnetic separation ability, and its magnetic saturation intensity is as high as 30.60 emu/g. BC and γ-Fe2O3@BC were applied to remove norfloxacin (NOR) from a water body. It was found that the adsorption of NOR by both of them followed the pseudo-second-order kinetic model. The adsorption isotherm mainly conforms to the Sips model, and the adsorption process of NOR is a spontaneous endothermic reaction. The pH and ionic strength have a great influence on the adsorption of NOR by BC and γ-Fe2O3@BC, and they play a role mainly by influencing the morphology of NOR in water. The adsorption mechanism showed that cation exchange and hydrogen bonding were the main forces for BC to adsorb NOR. Moreover, the γ-Fe2O3 particles enhanced the hydrophobicity of the pomelo peel-based biochar, making the hydrophobicity become the main force for the adsorption of NOR by the γ-Fe2O3@BC. The adsorption-desorption experiment showed that after four cycles of recycling, the adsorption capacity of γ-Fe2O3@BC for NOR was still up to 61.43% of the initial adsorption capacity, and it had a good recycling property.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Ming Zhang
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Runjuan Zhou
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Jiyuan Li
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Wei Zhao
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Jinghong Zhou
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
5
|
Wu Z, Li H, Luo Y, Chen G, Li J, Wang Y, Yang Y, Tan H. Insights into the structural characterisations, bioactivities and their correlations with water‐soluble polysaccharides extracted from different pomelo (
Citrus maxima
Merr.) tissues. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhen Wu
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Hong Li
- Chongqing Institute for Food and Drug Control Chongqing 401121 China
| | - Yang Luo
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Gang Chen
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Juan Li
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Yongde Wang
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Yong Yang
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Hongjun Tan
- Chongqing Key Laboratory of Chinese Medicine & Health Science Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| |
Collapse
|
6
|
Wang J, Zhang M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031075. [PMID: 32046258 PMCID: PMC7037948 DOI: 10.3390/ijerph17031075] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/04/2023]
Abstract
In this paper, biochar (BC) was prepared from discarded grapefruit peel and modified to prepare magnetic biochar (MBC). Physical and chemical properties of BC and MBC were characterized, and the results showed that the type of iron oxide loaded by MBC was γ-Fe2O3. Compared with BC, MBC has a larger specific surface area and pore volume, with more oxygen-containing functional groups on the surface. BC and MBC were used to adsorb and remove endocrine-disrupting chemical (EDC) bisphenol A (BPA) from simulated wastewater. The results showed that the adsorption kinetics and adsorption isotherm of BPA adsorption by BC and MBC were mainly in accordance with the pseudo-second-order kinetics model and the Langmuir model. This indicates that the adsorption of BPA on BC and MBC is mainly a chemically controlled monolayer adsorption. Adsorption thermodynamics show that BC and MBC adsorption of BPA is a spontaneous exothermic reaction, and lowering the temperature is conducive to the adsorption reaction. The effect of solution pH on the adsorption of BPA by both was significant. The optimum pH for BC and MBC to absorb BPA was 6 and 3, respectively. The concentration of Na+ in the range of 0–0.10 mol·L−1 can promote the adsorption of BPA to MBC. MBC loaded with γ-Fe2O3 not only has excellent magnetic separation ability, but can also reach about 80% of the initial adsorption capacity after four cycles of adsorption. By analyzing the adsorption mechanism, it was found that the H-bond and the π–π electron donor–acceptor interaction (EDA) were the main forces for BC and MBC to adsorb BPA.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Ming Zhang
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence:
| |
Collapse
|
7
|
Tao X, Wu Y, Cha L. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19828-19842. [PMID: 31090012 DOI: 10.1007/s11356-019-05322-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
A simple and economical method was proposed to synthesize the shaddock peels-based activated carbon (SPAC) for their application as efficient sorbents to eliminate Cr (VI) and methyl orange (MO) from one-component and two-component systems. The synthesis was conducted via activation of phosphoric acid and high-temperature carbonization. The as-prepared SPAC was characterized by Brunauer-Emmett-Teller, scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, among other techniques. The adsorption experiment, which used five types of fruit peel (shaddock peels, orange peels, apple peels, banana peels, and tangerine peels), indicated that shaddock peels were the optimal precursors, with the high removal efficiencies for Cr (VI) (21.2%) and MO (54.25%). The effects of various factors (e.g., initial concentration, sorbent dosage, pH values, and contact time) were systematically evaluated. For the one-component system, the maximum adsorption capacities of Cr (VI) (9.95 mg/g) and MO (94.59 mg/g) reached pH levels 2 and 3, respectively. Kinetic modeling demonstrated that the pseudo-second-order kinetic model was adopted for the one-component and two-component systems. Isotherm studies suggested that Cr (VI) and MO sorption processes in the one-component explained well the Langmuir and Freundlich models, respectively. The extended Freundlich multicomponent isotherm model was more compatible for explaining competitive adsorption in the binary component system. The adsorbed amount of Cr (VI) was markedly suppressed by MO, whereas MO adsorption was not significantly influenced owing to the existence of Cr (VI). The higher adsorption capacity of MO could be mainly attributed to the strong force acting between MO and SPAC. The findings of this study confirmed that SPAC provided a sustainable choice for cycling solid waste shaddock peels to remove hazardous contaminants.
Collapse
Affiliation(s)
- Xiaoming Tao
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Xikang Road #1, Nanjing, 210098, China
| | - Yunhai Wu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Xikang Road #1, Nanjing, 210098, China.
| | - Ligen Cha
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Xikang Road #1, Nanjing, 210098, China
| |
Collapse
|
8
|
Development of
Phyllanthus emblica
(L) fruit as a carrier for EGCG: Interaction and in vitro digestion study. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Dinh VP, Huynh TDT, Le HM, Nguyen VD, Dao VA, Hung NQ, Tuyen LA, Lee S, Yi J, Nguyen TD, Tan LV. Insight into the adsorption mechanisms of methylene blue and chromium(iii) from aqueous solution onto pomelo fruit peel. RSC Adv 2019; 9:25847-25860. [PMID: 35530102 PMCID: PMC9070119 DOI: 10.1039/c9ra04296b] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/07/2022] Open
Abstract
In this study, the biosorption mechanisms of methylene blue (MB) and Cr(iii) onto pomelo peel collected from our local fruits are investigated by combining experimental analysis with ab initio simulations.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City 700000
- Vietnam
| | | | - Hung M. Le
- Center for Innovative Materials and Architectures (INOMAR)
- Vietnam National University (VNUHCM)
- Ho Chi Minh City
- Vietnam
| | | | - Vinh-Ai Dao
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City 700000
- Vietnam
| | - N. Quang Hung
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City 700000
- Vietnam
| | - L. Anh Tuyen
- Center for Nuclear Techniques
- Vietnam Atomic Energy Institute
- Ho Chi Minh City, 700000
- Vietnam
| | - Sunhwa Lee
- School of Information and Communication Engineering
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Junsin Yi
- School of Information and Communication Engineering
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN)
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | - L. V. Tan
- Industrial University of Ho Chi Minh City
- HCM City
- Vietnam
| |
Collapse
|