1
|
Wang C, Wang Y, Song Y, Ren M, Gao Z, Ren J. Effect of onion skin powder on color, lipid, and protein oxidative stability of premade beef patty during cold storage. Sci Rep 2024; 14:20816. [PMID: 39242593 PMCID: PMC11379821 DOI: 10.1038/s41598-024-71265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
The impact of premade beef patty (BBP) with red onion skin powder (OSP) at 0, 1, 2, and 3% levels on color, lipid, and protein oxidative stability, and infection degree of microorganisms during cold storage was investigated. The objective was to determine the effect of color by L*, a*, b*, and the content of MetMb. The inhibitory effect of OSP on the oxidation of lipid and protein was studied based on TBARS and the carbonyl content of protein in samples at different storage times. TVB-N content was used to characterize the degree of infection of microorganisms and their effect on meat quality. The results showed that the addition of OSP reduced the pH, L *, a*, and b * values of BBP, and improved the hardness, springiness, gumminess, and cohesiveness of BBP, but had no significant effect on the chewiness of BBP (p > 0.05). After 12 days of storage, the carbonyl group and TBARS content in the BBP supplemented with 3%OSP was significantly lower than that in the control group (p < 0.05). Furthermore, the addition of OSP significantly inhibited the TVB-N increase during beef patty storage. These results indicated that OSP has a good research prospect as a natural antioxidant or preservative.
Collapse
Affiliation(s)
- Cuntang Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China.
| | - Yuqing Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Yang Song
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Manni Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Zengming Gao
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China
| | - Jian Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar, 161006, People's Republic of China.
| |
Collapse
|
2
|
Ma R, Feng L, Wu P, Liu Y, Ren HM, Jin XW, Li SW, Tang L, Zhou XQ, Jiang WD. Dietary copper improves intestinal structural integrity in juvenile grass carp ( Ctenopharyngodon idella) probably related to its increased intestinal antioxidant capacity and apical junction complex. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:96-106. [PMID: 39056059 PMCID: PMC11269860 DOI: 10.1016/j.aninu.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 07/28/2024]
Abstract
This research evaluated the effects of copper (Cu) on intestinal antioxidant capacity and apical junctional complex (AJC) in juvenile grass carp. A total of 1080 healthy juvenile grass carp (11.16 ± 0.01 g) were fed six diets including different dosages of Cu, namely 0, 2, 4, 6, 8 mg/kg (Cu citrate [CuCit] as Cu source) and 3 mg/kg (CuSO4·5H2O as Cu source). The trial lasted for 9 weeks. The findings revealed that dietary optimal Cu supplementation (2.2 to 4.1 mg/kg) promoted intestinal growth, including intestinal length, intestinal length index, intestinal weight, and intestinal somatic index (P < 0.05). Furthermore, optimal Cu boosted the intestinal mucosal barrier in juvenile grass carp. On the one hand, optimal Cu reduced diamine oxidase and D-lactate levels in serum (P < 0.05), reduced levels of the oxidative damage indicators malondialdehyde, reactive oxygen species (ROS), protein carbonyl, superoxide dismutase (P < 0.05), and catalase mRNA levels were elevated (P < 0.05), thus boosting intestinal antioxidant capacity, the binding protein Keap1a/1b/Nrf2 signaling pathway might be involved. Optimal Cu had no impact on glutathione peroxidase 1b (GPx1b) gene expression (P > 0.05). On the other hand, optimal Cu increased intestinal tight junction (TJ) proteins (except for claudin 15b) and adherens junction (AJ) proteins (E-cadherin, α-catenin, β-catenin, nectin and afadin) mRNA levels (P < 0.05), which could be connected to the signaling pathway formed by the Ras homolog gene family, member A (RhoA), Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK). Finally, based on serum indicator D-lactate and intestinal oxidative damage index (ROS), Cu requirement (CuCit as Cu source) for juvenile grass carp from initial weight to final weight (from 11 to 173 g) was determined to be 4.14 and 4.12 mg/kg diet, respectively. This work may provide a theoretical foundation for identifying putative Cu regulation pathways on fish intestinal health.
Collapse
Affiliation(s)
- Rui Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
3
|
Lee DY, Kim EJ, Park SE, Cho KM, Kwon SJ, Roh SW, Kwak S, Whon TW, Son HS. Impact of essential and optional ingredients on microbial and metabolic profiles of kimchi. Food Chem X 2024; 22:101348. [PMID: 38623504 PMCID: PMC11016982 DOI: 10.1016/j.fochx.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
This study aimed to examine the impacts of essential and optional ingredients on the microbial and metabolic profiles of kimchi during 100 days of fermentation, using a mix-omics approach. Kimchi manufactured without essential ingredients (e.g., red pepper, garlic, ginger, green onion, and radish) had lower lactic acid content. The absence of garlic was associated with a higher proportion of Latilactobacillus and Lactococcus, while the absence of red pepper was associated with a greater proportion of Leuconostoc than the control group. In addition, red pepper and garlic served as primary determinants of the levels of organic acids and biogenic amines. Sugar was positively correlated with the levels of melibiose, and anchovy sauce was positively correlated with the levels of amino acids such as methionine, leucine, and glycine. These findings contribute to a fundamental understanding of how ingredients influence kimchi fermentation, offering valuable insights for optimizing kimchi production to meet various preferences.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc., Gyeonggi-do 13486, Republic of Korea
| | - Suryang Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Chen Q, Wang Z, Li H, Xu B. Effects of chitosan-based packaging film crosslinked with nanoencapsulated star anise essential oil and superchilled storage on the quality of rabbit meat patties. Int J Biol Macromol 2024; 271:132402. [PMID: 38754662 DOI: 10.1016/j.ijbiomac.2024.132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In this paper, the effects of chitosan film containing star anise essential oil nanofiltration (CFSAO) and superchilled (SC) temperature on the changes of physicochemical and microbiological indexes of rabbit meat patties within 15 days of storage were studied. The total aerobic bacteria counts, malondialdehyde content, protein carbonyl content, total sulfhydryl content, and metmyoglobin content continued to grow throughout the entire experimental period, and the maximum absorption peak at the soret region of myoglobin gradually decreased. Along with the storage time extended, the brightness and redness of rabbit meat significantly decreased (P < 0.05), while the yellowness significantly increased (P < 0.05). The results of storage experiments showed that chitosan composite films and SC temperature had good inhibition on lipid oxidation, myoglobin oxidation and degradation, sulfhydryl content reduction, and microbial growth of rabbit meat after 15 days of storage, and could slow down the change of rabbit meat color.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Huale Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
5
|
Li H, Zhao L, Dai Q, Mo H, Liu Z, Pu H, Zhu X, Yao L, Xu D, Hu L. Blended cumin/Zanthoxylum essential oil improve the antibacterial, fresh-keeping performance and flavor of chilled fresh mutton. Meat Sci 2023; 200:109173. [PMID: 37001444 DOI: 10.1016/j.meatsci.2023.109173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Microbial pollution and fat oxidation are the main factors that induce the deterioration in the quality of chilled fresh mutton. This study evaluated the effects of cumin (Cuminum cyminum) essential oil (CEO), Zanthoxylum essential oil (ZEO), and blended cumin/zanthoxylum essential oil (BEO) on the antibacterial, preservation of freshness, and flavor improvement of chilled fresh mutton. The results show that BEO exerts a good inhibition effect on microbial growth, lipid oxidation, and the formation of TVB-N, as well as slowing down the rate of juice loss under chilled conditions. GC-IMS assay results showed that BEO can enrich the flavor of roasted mutton with a higher level of volatile organic substances, such as ethyl acetate D. In conclusion, BEO treatments were more efficient than single treatments in ensuring the quality of lamb to improve microbiological safety and improve the flavor of roasted lamb stored under chilled conditions. Overall research indicates that BEO is an effective natural addition that can be used to preserve the quality and safety of chilled fresh mutton during storage.
Collapse
|
6
|
Pateiro M, Domínguez R, Munekata PES, Nieto G, Bangar SP, Dhama K, Lorenzo JM. Bioactive Compounds from Leaf Vegetables as Preservatives. Foods 2023; 12:foods12030637. [PMID: 36766166 PMCID: PMC9914076 DOI: 10.3390/foods12030637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Trends toward a healthier diet are increasing attention to clean-label products. This has led to the search for new ingredients that avoid the use of chemical additives. Food industries are responding to these demands by incorporating natural preservatives into their products, which consumers perceive as healthy. Leafy vegetables would fit this strategy since they are common components of the diet and are associated with beneficial health effects. The objective of this chapter is to offer an overview of the large number of bioactive compounds (phenolic acids, flavonoids, anthocyanins, glucosinolates, and sulfur compounds) present in these plants, which would be responsible for their activity as potential preservatives. Its incorporation into food would improve the quality and extend the shelf life by reducing oxidative processes and inhibiting or retarding the microbial growth that occurs during processing and storage without reducing the organoleptic characteristics of the product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Campus Mare Nostrum, 30071 Espinardo, Spain
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly 243122, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Area de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
7
|
Awad AM, Kumar P, Ismail‐Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Overview of plant extracts as natural preservatives in meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Pavan Kumar
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Livestock Products Technology College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mohammad Rashedi Ismail‐Fitry
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia UPM Serdang Malaysia
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Awis Qurni Sazili
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
- Halal Product Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
| |
Collapse
|
8
|
Effect of pepper ( Zanthoxylum bungeanum Maxim.) essential oil on quality changes in rabbit meat patty during chilled storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:179-191. [PMID: 35068562 PMCID: PMC8758852 DOI: 10.1007/s13197-021-04998-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
In this paper, the components of Zanthoxylum bungeanum Maxim. essential oil (ZBMEO) were analyzed. The efficacy of different concentrations of ZBMEO on the change in physical and chemical indicators of the rabbit meat patty was evaluated. Furthermore, kinetics models were employed to calculate the lipid oxidation induction period and microbial growth lag time. GC-MS analysis revealed that the major chemical components in ZBMEO included linalool, limonene, and sabinene. Results of the storage experiment indicated that ZBMEO had a good inhibition effect on lipid and protein oxidation, microbial growth, and formation of TVB-N, as well as slowed down the rate of change in color and pH during the 12 days storage time of rabbit meat. The models showed that adding ZBMEO could delay the lipid oxidation induction period, and extend the microbial growth lag time. Overall data showed that ZBMEO is a promising natural additive to maintain the quality of rabbit meat patty.
Collapse
|
9
|
Wang Z, He Z, Zhang D, Chen X, Li H. Effects of purslane extract on the quality indices of rabbit meat patties under chilled storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zefu Wang
- College of Food Science Southwest University Chongqing China
| | - Zhifei He
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| | - Dong Zhang
- College of Food Science Southwest University Chongqing China
| | - Xiaosi Chen
- College of Food Science Southwest University Chongqing China
| | - Hongjun Li
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| |
Collapse
|
10
|
Zhou M, Zheng X, Zhu H, Li L, Zhang L, Liu M, Liu Z, Peng M, Wang C, Li Q, Li D. Effect of Lactobacillus plantarum enriched with organic/inorganic selenium on the quality and microbial communities of fermented pickles. Food Chem 2021; 365:130495. [PMID: 34243128 DOI: 10.1016/j.foodchem.2021.130495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Lactobacillus enriched with organic/inorganic selenium and pickles fermented with the Lactobacillus plantarum R were prepared. The results showed that selenium-enriched Lactobacillus plantarum R enhanced the antioxidant capacity, inhibition rate of advanced glycation end-products (AGEs), nitrite degradation, and the organic acid production of fermented pickles, while Lactobacillus plantarum R enriched with inorganic selenium (R-Se-IN) showed the best performance. Twenty-three aroma-active substances and seven characteristic compounds were detected in the R-Se-IN group. Moreover, the bacterial community result revealed that Lactococcus, Lactobacillus, and Leuconostoc were predominant in the R-Se-IN group, while the other groups contained Enterobacter, Halomonas, and Klebsiella. Furthermore, the correlations between environmental factors, differential flavor substances, and microbial communities were explored based on multivariate statistical analysis. These results indicate that the addition of Lactobacillus plantarum R enriched with organic/inorganic selenium influenced the environmental factors, differential flavor substances, and microbial communities of the fermented pickles.
Collapse
Affiliation(s)
- Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Xin Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Hanjian Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Leibing Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Lin Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Menglin Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zeping Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Mingye Peng
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Qin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
11
|
Nurul Syahida S, Ismail-Fitry M, Ainun Z, Nur Hanani Z. Effects of gelatin/palm wax/lemongrass essential oil (GPL)-coated Kraft paper on the quality and shelf life of ground beef stored at 4 ℃. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Auriema BE, Vicente J, Carvalho MG, Castro RN, Luchese RH, Mathias SP. Correlation between nuclear magnetic resonance and traditional method to evaluate the lipid oxidation of emulsified chicken meat products with fat replacement by green banana biomass. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruna E. Auriema
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Universidade Federal Rural de Rio de Janeiro (UFRRJ) Seropédica Brasil
| | - Juarez Vicente
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Universidade Federal Rural de Rio de Janeiro (UFRRJ) Seropédica Brasil
| | - Mario G. Carvalho
- Programa de Pós‐Graduação em Química (PPGQ) Instituto de Química‐IQUniversidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica Brasil
| | - Rosane N. Castro
- Programa de Pós‐Graduação em Química (PPGQ) Instituto de Química‐IQUniversidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica Brasil
| | - Rosa H. Luchese
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Universidade Federal Rural de Rio de Janeiro (UFRRJ) Seropédica Brasil
| | - Simone P. Mathias
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Universidade Federal Rural de Rio de Janeiro (UFRRJ) Seropédica Brasil
| |
Collapse
|
13
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
14
|
Oxidative Stability, Color, and Physicochemical and Sensorial Properties of Raw Stacked and Ground Meat Treated with Shahpouri Orange Juice. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8886527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Shahpouri orange juice (SOJ) is a rich source of bioactive compounds including flavonoids and phenolic acids. However, limited studies have been done to determine its effect on stacked and ground meat quality. The study was performed to determine and compare the effects of 0, 200, 400, 600, and 800 ppm SOJ with 200 ppm BHA on stacked and ground beef quality. The flavonoid compounds of SOJ were quantified as well as its antioxidant activity. Surface color, pH, lipid oxidation (peroxide value (PV) and thiobarbituric acid (TBA)), and sensorial properties of stacked and ground beef were determined at a day of SOJ incorporation and then after 6 days of storage at 4°C. The addition of SOJ affected pH compared to the control sample. Incorporating SOJ in stacked and ground meat improved redness and decreased lipid oxidation (PV and TBA) during storage compared with control. SOJ at 800 ppm improved overall sensorial properties after 6 days of storage. These results suggested that SOJ could be used as a natural antioxidant in stacked and ground meat to limit lipid oxidation and discoloration.
Collapse
|
15
|
Choi JH, Bae SM, Jeong JY. Effects of the Addition Levels of White Kimchi Powder and Acerola Juice Powder on the Qualities of Indirectly Cured Meat Products. Food Sci Anim Resour 2020; 40:636-648. [PMID: 32734270 PMCID: PMC7372986 DOI: 10.5851/kosfa.2020.e41] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/28/2022] Open
Abstract
This study investigated the effects of the addition levels of white kimchi powder
and acerola juice powder, as natural sources of sodium nitrite and sodium
ascorbate, on the quality of cooked ground pork products. Freeze-dried white
kimchi powder was prepared and used after fermentation for 2 wk. Six treatments
were included: control (100 ppm sodium nitrite and 500 ppm sodium ascorbate),
treatment 1 (0.2% white kimchi powder, 0.02 % starter culture, and
0.1% acerola juice powder), treatment 2 (0.2% white kimchi powder,
0.02% starter culture, and 0.2% acerola juice powder), treatment 3
(0.4% white kimchi powder, 0.04% starter culture, and 0.1%
acerola juice powder), treatment 4 (0.4% white kimchi powder,
0.04% starter culture, and 0.2% acerola juice powder), and
treatment 5 (0.4% celery powder, 0.04% starter culture, and
0.2% acerola juice powder). The pH values were decreased (p<0.05)
because of lower pH of acerola juice powder, resulting in lower cooking yields
(p<0.05) in these treatments. CIE L* and CIE a* values of indirectly
cured meat products were not different (p>0.05) from the sodium
nitrite-added control. However, indirectly cured meat products showed lower
(p<0.05) residual nitrite contents, but higher (p<0.05) nitrosyl
hemochrome contents and cure efficiency than the control. Treatments 2 and 4 had
higher (p<0.05) total pigment contents and lipid oxidation than the
control. This study indicates that white kimchi powder coupled with acerola
juice powder has substantial potential to substitute synthetic nitrite to
naturally cured meat products, which could be favored by consumers seeking clean
label products.
Collapse
Affiliation(s)
- Jae Hyeong Choi
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| | - Su Min Bae
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| | - Jong Youn Jeong
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
16
|
Leng Y, Sun Y, Wang X, Hou J, Zhao X, Zhang Y. Electrical impedance estimation for pork tissues during chilled storage. Meat Sci 2020; 161:108014. [DOI: 10.1016/j.meatsci.2019.108014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023]
|