1
|
Zhang Z, Li F, Zhang Z, Muhmood A, Li S, Liu M, Zhou S, Du Z, Ruan C, Sun J. Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods 2025; 14:677. [PMID: 40002120 PMCID: PMC11854101 DOI: 10.3390/foods14040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Natural functional plant oils (FPOs) have been widely exploited due to their abundant biological activities. However, when exposed to oxygen, light, moisture, and heat, some limitations such as oxidative deterioration, impaired flavor, loss of nutritional value and volatile compounds, and decreased shelf life hinder the widespread application of FPOs in the food industry. Notably, the microencapsulation technique is one of the advanced technologies, which has been used to maintain the biological and physicochemical properties of FPOs. The present review provided a comprehensive overview of the nutrient compositions and functionality of FPOs, preparation techniques for microcapsules, and applications of microencapsulated FPOs (MFPOs) in the food industry. FPOs obtained from a wide range of sources were abundant in bioactive compounds and possessed disease risk mitigation and improved human health properties. The preparation methods of microencapsulation technology included physical, chemical, and physicochemical methods, which had the ability to enhance oxidative stability, functional, shelf life, and thermostability properties of FPOs. In this context, MFPOs had been applied as a fortification in sausage, meat, bakery, and flour products. Overall, this work will provide information for academic fields and industries the further exploration of food and nutriment products.
Collapse
Affiliation(s)
- Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China;
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, 8000 Aarhus, Denmark;
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China;
| | | | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| |
Collapse
|
2
|
Zhang Z, Zhang Z, Li X, Zhou S, Liu M, Li S, Liu H, Gao H, Zhao A, Zhang Y, Huang L, Sun J. Preparation and Characterization of Prickly Ash Peel Oleoresin Microcapsules and Flavor Retention Analysis. Foods 2024; 13:1726. [PMID: 38890954 PMCID: PMC11171865 DOI: 10.3390/foods13111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Prickly ash peel oleoresin (PPO) is a highly concentrated oil of Prickly ash essential oil and has a stronger aroma. However, its low water solubility, high volatility, difficulty in transport and storage, and decomposition by light, heat, and oxygen limit its wider application. To solve this problem, this study used freeze-drying or spray-drying, with soybean protein isolate (SPI) or gum Arabic (GA), combined with aqueous maltodextrin (MD) as the encapsulating agents to prepare four types of PPO microcapsules (POMs). Spray-dried microcapsules with GA as the encapsulating agent achieved a high encapsulation efficiency (EE) of 92.31 ± 0.31%, improved the thermal stability of the PPO, and had spherical morphology. (Headspace solid-phase microextraction/gas chromatography-mass spectrometry) HS-SPME/GC-MS detected 41 volatile compounds in PPO; of these, linalool, β-myrcene, sabinene, and D-limonene were identified as key flavor components. Principal component analysis (PCA) effectively distinguished the significant differences in flavor between PPO, spray-dried SPI/MD microcapsules (SS), and spray-dried GA/MD microcapsules (SG). During 15 days of air-exposure, the loss of flavor from SG (54.62 ± 0.54%) was significantly lower than PPO (79.45 ± 1.45%) and SS (57.55 ± 0.36%). During the air-exposure period, SG consistently had the highest antioxidant capacity, making it desirable for PPO packaging, and expanding its potential applications within the food industry.
Collapse
Affiliation(s)
- Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Xichao Li
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China;
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Aiyun Zhao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Yongchang Zhang
- LIHOOS (Qingdao) Food Co., Ltd., Qingdao 266000, China; (Y.Z.); (L.H.)
| | - Liu Huang
- LIHOOS (Qingdao) Food Co., Ltd., Qingdao 266000, China; (Y.Z.); (L.H.)
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| |
Collapse
|
3
|
Demircan H, Oral RA, Toker OS, Palabiyik I. Investigation of the Effects of Phenolic Extracts Obtained from Agro-Industrial Food Wastes on Gelatin Modification. ACS OMEGA 2024; 9:20263-20276. [PMID: 38737019 PMCID: PMC11080024 DOI: 10.1021/acsomega.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
In this study, modified bovine gelatin was produced using the alkaline technique with four different oxidized agro-industrial food waste (pomegranate peel (PP), grape pomace and seed (GP), black tea (BT), and green tea (GT)) phenolic extracts (AFWEs) at three different concentrations (1, 3, and 5% based on dry gelatin). The effect of waste type and concentration on the textural, rheological, emulsifying, foaming, swelling, and color properties of gelatin, as well as its total phenolic content and antioxidant activity, was investigated. Significant improvement in gel strength, thermal stability, and gelation rate of gelatin was achieved by modification with oxidized agro-industrial waste extracts. Compared to the control sample, 46.24% higher bloom strength in the GT5 sample, 5.29 and 6.01 °C higher gelling and melting temperatures in the PP5 sample, respectively, and 85.70% lower tmodel value in the GT3 sample were observed. Additionally, the total phenolic content, antioxidant activity, foam, and emulsion properties of the modified gels increased significantly. This study revealed that gelatins with improved technological and functional properties can be produced by using oxidized phenolic extracts obtained from agricultural industrial food wastes as cross-linking agents in the modification of gelatin.
Collapse
Affiliation(s)
- Huseyin Demircan
- Faculty
of Engineering and Natural Science, Department of Food Engineering, Bursa Technical University, 16310 Bursa, Turkey
- Faculty
of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Rasim A. Oral
- Faculty
of Engineering and Natural Science, Department of Food Engineering, Bursa Technical University, 16310 Bursa, Turkey
| | - Omer S. Toker
- Faculty
of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Ibrahim Palabiyik
- Faculty
of Agriculture, Department of Food Engineering, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey
| |
Collapse
|
4
|
Deng Z, Xia Y, Chen L, Zhao Y, Wang R, Liang G. Insight into covalent conjugates of β-lactoglobulin with rutin: Characterizing allergenicity, digestibility, and antioxidant properties in vitro. Food Res Int 2023; 173:113401. [PMID: 37803745 DOI: 10.1016/j.foodres.2023.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
β-lactoglobulin (β-LG) is an essential nutrient in milk, but it is the primary allergen causing dairy allergy in humans. Currently, researchers are focusing on using flavonoids to covalently modify β-LG for improving its functionality. However, the impact and underlying mechanisms of rutin covalent modification on the functional properties and allergenicity of β-LG remain unclear. Here, we aim to investigate the changes in allergenicity, digestive characteristics, and antioxidant properties of β-LG after covalent modification using a combination of spectroscopy, enzyme-linked immunosorbent assay (ELISA), simulated digestion, and antioxidant assays. The results indicate that rutin forms covalent bonds with the free amino group, sulfhydryl group, and tryptophan of β-LG, leading to alterations in the secondary structure of β-LG. Furthermore, the modified β-LG exhibits improved antioxidant capacity and decreased allergenicity, along with reduced resistance to pancreatin digestion in vitro. This study provides novel insights and strategies to expand the functional application of β-LG.
Collapse
Affiliation(s)
- Zhifen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Lang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ruihong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
An J, Adelina NM, Zhang L, Zhao Y. Effect of roasting pre‐treatment of two grafted pine nuts (
Pinus koraiensis
) on yield, color, chemical compositions, antioxidant activity, and oxidative stability of the oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jiayi An
- Department of Food Science School of Forestry Northeast Forestry University Harbin People’s Republic of China
| | - Nadya Mara Adelina
- Department of Food Science School of Forestry Northeast Forestry University Harbin People’s Republic of China
| | - Ligang Zhang
- College of Food Science Northeast Agricultural University Harbin People’s Republic of China
| | - Yuhong Zhao
- Department of Food Science School of Forestry Northeast Forestry University Harbin People’s Republic of China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province Harbin People’s Republic of China
| |
Collapse
|
6
|
Wang H, You S, Wang W, Zeng Y, Su R, Qi W, Wang K, He Z. Laccase-catalyzed soy protein and gallic acid complexation: Effects on conformational structures and antioxidant activity. Food Chem 2021; 375:131865. [PMID: 34953246 DOI: 10.1016/j.foodchem.2021.131865] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 11/04/2022]
Abstract
The ability of laccase to oxidize polyphenols arouses our interest that laccase can be applied for protein-polyphenol cross-linking. In this study, laccase promoted the cross-linking of gallic acid (GA) and soy protein isolate (SPI) under neutral pH. SPI-GA complexes changed the secondary structures with a decrease in β-fold and an increase in α-helix and β-turn. The free-radical scavenging activity and reducing power determination results suggested that GA elevated the SPI antioxidant activity significantly. Specifically, DPPH free radical scavenging rate and ABTS free radical scavenging ability increased almost 5- and 1.5-fold compared with unmodified SPI, respectively. Moreover, the reducing power had more than 3-fold compared to the SPI control. This study provided a novel enzyme-induced approach to modulate the physicochemical properties of SPI binding polyphenol.
Collapse
Affiliation(s)
- Hui Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yan Zeng
- National Technology Innovation Center of Synthetic Biology, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Kang Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
7
|
Zhong SR, Li MF, Zhang ZH, Zong MH, Wu XL, Lou WY. Novel Antioxidative Wall Materials for Lactobacillus casei Microencapsulation via the Maillard Reaction between the Soy Protein Isolate and Prebiotic Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13744-13753. [PMID: 34780175 DOI: 10.1021/acs.jafc.1c02907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, three kinds of Maillard reaction products (MRPs) have been, for the first time, successfully prepared by conjugating soy protein isolate (SPI) with isomaltooligosaccharide, xylooligosaccharide, or galactooligosaccharide at 80 °C for 30 or 60 min and applied for the construction of Lactobacillus casei (L. casei) microcapsules. The results showed that MRPs exhibited enhanced antioxidative activities compared with their physically mixed counterparts. The digested MRPs displayed excellent resistance to pathogenic bacteria and promoted the growth of L. casei. Moreover, MRP-encapsulated L. casei showed a higher survival rate than free L. casei under tested adverse conditions including heat treatment, storage, and mechanical forces. Under simulated digestion conditions, the viability of L. casei decreased from 8.8 log cfu/mL to 1.6 log cfu/mL, while that of MRP-encapsulated L. casei was maintained at 7.4 log cfu/mL. Thus, MRP-based SPI-oligosaccharide conjugates exhibited great potential for microencapsulation of probiotics.
Collapse
Affiliation(s)
- Shu-Rui Zhong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Fan Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhi-Hua Zhang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao-Ling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Wang L, Lu S, Deng Y, Wu W, Wang L, Liu Y, Zu Y, Zhao X. Pickering emulsions stabilized by luteolin micro-nano particles to improve the oxidative stability of pine nut oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1314-1322. [PMID: 33245580 DOI: 10.1002/jsfa.10739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pine oil contains a high percentage of polyunsaturated fatty acids, which make it prone to oxidation. Luteolin (LUT) micro-nano particles with antioxidant properties can be used as stabilizers to form an edible oil-in-water Pickering emulsion to improve the oxidative stability of pine nut oil. RESULTS Under optimal preparation conditions, the LUT micro-nano particles and pine nut oil account for about 0.44 and 90.9 g·kg-1 of the total mass of the emulsion, respectively. The LUT particles in the suspension have a mean particle size of about 479 nm, present a sheet-like structure with a cut surface of 30-50 nm, and can reduce the surface tension of deionized water. In the optimized Pickering emulsion, the emulsion droplets are approximately spherical and have a mean diameter of about 125.6 nm and uniform distribution. The optimized Pickering emulsion droplets can remain stable for up to 2 h in an environment where the pH levels are 7-8.5, ultraviolet B radiation (UVB) irradiation, of less than 5.0 g·kg-1 , and at a temperature of 80 °C. The stability of the emulsion in simulated digestive fluid changed minimally. In the first 7 days of the accelerated oxidation experiment, LUT micro-nano particles not only successfully protected the integrity of emulsion droplets but also fully inhibited the peroxidation of pine oil. CONCLUSION The strong antioxidant properties of LUT micro-nano particles, and the dense protective layer they formed, stabilized the Pickering emulsion successfully. The particles also improved the oxidation stability of pine nut oil. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengmin Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yiping Deng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Weiwei Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Li Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yuangang Zu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Guo Y, Bao YH, Sun KF, Chang C, Liu WF. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|