1
|
Li F, Wu D, Ma K, Wei T, Wu J, Zhou S, Xiang S, Zhu Z, Zhang X, Tan C, Luo H, Deng J. Effect of dietary supplementation of Bacillus subtilis QST 713 on constipation, reproductive performance and offspring growth performance of sows. Anim Reprod Sci 2025; 274:107785. [PMID: 39965290 DOI: 10.1016/j.anireprosci.2025.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
The experiment aimed to investigate the effects of dietary supplementation with Bacillus subtilis QST 713 (BS) on the reproductive performance, perinatal constipation, and offspring growth performance of sows. 78 multiparous Landrace-Yorkshire sows with same parity and backfat thickness were divided into 2 groups: a basal diet group (CON) and a basal diet supplemented with 1.5 × 109 CFU/kg BS. The experiment was conducted from day 85 of gestation to day 21 of lactation. Reproductive performance, lactation performance, and perinatal fecal scores of sows were recorded. Samples were collected for subsequent analysis, including the feces of sows on day 110 of gestation, colostrum within 2 hours of parturition, milk on day 21 of lactation and feces from sows on day 21 of lactation. The results showed that, compared with the CON group, the BS group significantly shortened the duration of parturition (P < 0.01) and the average birth interval of piglets (P < 0.05), reduced stillbirth rate (P < 0.05) and invalid piglet rate (P < 0.05). Additionally, the BS group increased the content of protein (P < 0.05) and level of IgM in colostrum (P < 0.05), as well as the average daily gain (P < 0.05) of weaned piglets. The BS group increased the perinatal fecal score (P < 0.05) of sows, decreased the incidence of post-partum constipation (P < 0.05), and increased the relative abundance of Lactobacillus (P < 0.05) in feces on day 110 of gestation. In summary, a maternal diet supplemented with BS reduced the stillbirth rate by shortening the duration of parturition, alleviated perinatal constipation, and improved intestinal microbiota, meanwhile improving the growth performance of piglets by increasing nutrients and immunoglobulins in colostrum.
Collapse
Affiliation(s)
- Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | - Tanghong Wei
- Dekang Food and Agriculture Group Co., LTD, Chengdu, China
| | - Junyi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | - Shijian Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | - Shizhe Xiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | | | | | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China
| | - Hefeng Luo
- Dekang Food and Agriculture Group Co., LTD, Chengdu, China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ruampatana J, Settachaimongkon S, Kaewsirikool J, Iamraksa P, Choompoo S, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Feyera T, Nuntapaitoon M. Alterations in Milk Biomolecular Profiles and Piglet Performances Due to Dietary Probiotic Bacillus licheniformis DSMZ 28710 Supplementation. J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39940111 DOI: 10.1111/jpn.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/14/2025]
Abstract
The present study aimed to investigate the effects of probiotic Bacillus licheniformis DSMZ 28710 supplementation on sow performance, Preweaning piglet performance, and the biochemical profiles of colostrum and milk. Sixty-eight crossbred sows (Landrace× $\times $ Yorkshire) were allocated to either a standard lactation diet (Control; n = 35) or the Control diet supplemented with 10 g/sow/day of B. licheniformis DSMZ 28710 (Treatment; n = 33), from day 109 of gestation until day 21 of lactation. Sow and piglet performance, as well as the incidence of piglet diarrhea, were recorded. Moreover, the study investigated the changes in major chemical compositions, immunoglobulins, fatty acids, and non-volatile polar metabolites in colostrum, transient milk, and mature milk of sows. Supplementation of B. licheniformis increased piglet body weight on day 21 of lactation in old parity sows (p = 0.037). Moreover, the incidence of diarrhea was reduced in piglets suckled by sows supplemented with B. licheniformis DSMZ 28710, regardless of sow's parity or lactation stage (p < 0.05). Probiotic supplementation decreased fat content in transient milk (p = 0.026) and increased lactose content in mature milk (p = 0.011). Chemometric analysis revealed clear distinctions between the Control and Treatment group in the fatty acid profiles of colostrum, transient milk, and mature milk, while notable differences in non-volatile polar metabolite profiles were observed specifically in mature milk. In conclusion, supplementation with B. licheniformis DSMZ 28710 reduced the incidence of diarrhea in piglets, increased body weight of the piglets in old parity sows and altered the biomolecular profiles in colostrum, transit milk, and mature milk of the sows.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Jedsadakorn Kaewsirikool
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pornpavit Iamraksa
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirawit Choompoo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakornpathum, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, Tjele, Denmark
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Li D, Yang M, Ma Z, Che L, Feng B, Fang Z, Xu S, Zhuo Y, Li J, Wang J, Zhang Z, Wu Z, Lin T, Wu D, Lin Y. Glycerol Monolaurate Complex Improved Antioxidant, Anti-Inflammation, and Gut Microbiota Composition of Offspring in a Sow-Piglet Model. Vet Sci 2025; 12:24. [PMID: 39852899 PMCID: PMC11769162 DOI: 10.3390/vetsci12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
This study aimed to investigate the effects of maternal glycerol monolaurate complex (GML) and antibiotic (acetylisovaleryltylosin tartrate, ATLL) supplementation during late gestation and lactation on the reproductive performance of sows and the growth performance of piglets. In total, 64 pregnant sows were randomly divided into control, antibiotic, 0.1% GML, and 0.2% GML groups. The GML shortened their delivery interval and farrowing duration. The ATLL increased the level of malondialdehyde (MDA) in sows and piglets and enhanced glutathione peroxidase (GSH-Px) in piglets, while reducing the tumor necrosis factor-α (TNF-α) level in sows. The GML tended to increase milk protein in the colostrum and decreased the TNF-α of sows at lactation. Meanwhile, 0.2% GML increased the serum total superoxide dismutase (T-SOD) activity and interleukin-6 level in weaned piglets and decreased the TNF-α level in sows and weaned piglets. Furthermore, ATLL decreased the microbial diversity of sows, and GML tended to increase the microbial diversity of sows and piglets. The ATLL group had an increased relative abundance of Bacteroidota in weaned piglets. The GML decreased the relative abundance of Peptostreptococcales-Tissierellales, Proteobacteria, and the harmful bacteria Romboutsia in sows. Compared with the ATLL group, the 0.2% GML reduced the relative abundance of Bacteroidota in weaned piglets. Interestingly, both ATLL and GML supplementation decreased the relative abundance of harmful bacteria Peptostreptococcaceae in sows. Correlation analysis also found positive effects of ATLL and GML in anti-inflammatory and antioxidant aspects. In conclusion, GML enhanced reproductive and growth performance by improving antioxidant and anti-inflammatory status and maintaining intestinal flora balance, making it a promising alternative to ATLL in future applications.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Min Yang
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, China;
| | - Zhao Ma
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - JiHhua Wang
- Calid Biotech (Wuhan) Co., Ltd., Wuhan 430073, China;
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zehui Wu
- Sichuan Qiaozhu’er Breeding Co., Ltd., Neijiang 641100, China;
| | - Tao Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Z.M.); (L.C.); (B.F.); (Z.F.); (S.X.); (Y.Z.); (J.L.); (T.L.); (D.W.)
| |
Collapse
|
4
|
Ruampatana J, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Kanjanavaikoon K, der Veken WV, Poonyachoti S, Feyera T, Settachaimongkon S, Nuntapaitoon M. Clostridium butyricum Probiotic Feed Additive: Modulation of Sow Milk Metabolomics and Mitigation of Pre-Weaning Piglet Diarrhea. Animals (Basel) 2024; 14:2098. [PMID: 39061560 PMCID: PMC11273528 DOI: 10.3390/ani14142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to investigate the impact of Clostridium butyricum probiotic feed additive on sow and piglet performances, together with alterations in the lipidomic and metabolomic profiles of sow milk. Sixty-four Landrace × Yorkshire crossbred sows and 794 piglets were included. Sows were divided into two groups; i.e., (i) conventional gestation diet (control; n = 35) and (ii) conventional diet added with 10 g/sow/day of probiotic C. butyricum spores (treatment; n = 29) from one week before the estimated farrowing day until weaning (29.6 ± 4.8 days). The sow and piglet performances and incidence of piglet diarrhea were recorded. Changes in gross chemical composition, fatty acid and non-volatile polar metabolite profiles of sow colostrum, transient milk and mature milk were evaluated. The results showed that relative backfat loss in the treatment group (-2.3%) was significantly lower than in control group (11.6%), especially in primiparous sows (p = 0.019). The application of C. butyricum probiotics in sows significantly reduced the incidence of diarrhea in piglets (p < 0.001) but no other effect on piglet performance was found. Lipidomic and metabolomic analyses revealed variations in sow colostrum and milk biomolecular profiles, with indicative compounds significantly altered by feeding with the C. butyricum probiotics. In conclusion, the use of C. butyricum probiotics in sows may improve sow body condition and reduce diarrhea incidence in piglets, with underlying changes in milk composition that warrant further investigation. These findings support the potential of C. butyricum as a beneficial feed additive in swine production.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, DK-8830 Tjele, Denmark
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Ma K, Su B, Li F, Li J, Nie J, Xiong W, Luo J, Huang S, Zhou T, Liang X, Li F, Deng J, Tan C. Maternal or post-weaning dietary fructo-oligosaccharide supplementation reduces stillbirth rate of sows and diarrhea of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:155-164. [PMID: 38774024 PMCID: PMC11107255 DOI: 10.1016/j.aninu.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Fructo-oligosaccharides (FOS) are well-known prebiotics that have the potential to improve sow reproductive performance and increase piglet growth. However, previous studies were observed in sole FOS-supplemented diets of sows or weaned piglets and did not consider the sow-to-piglet transfer effect on the performance and diarrhea rate of weaned piglets. This study explores the effects of dietary FOS supplementation on the reproductive performance of sows, and the effects of FOS supplementation at different stages on the growth performance and diarrhea rate of weaned piglets. A split-plot experimental design was used with sow diet effect in the whole plot and differing piglet diet effect in the subplot. Fifty-two multiparous sows (223.24 ± 14.77 kg) were randomly divided into 2 groups (0 or 0.2% FOS). The experiment lasted from day 85 of gestation to day 21 of lactation. Reproductive performance, glucose tolerance, placental angiogenesis, and intestinal flora of sows were assessed. At weaning, 192 weaned piglets were grouped in 2 × 2 factorial designs, with the main effects of FOS supplemental level of sow diet (0 and 0.2%), and FOS supplemental level of weaned piglet diet (0 and 0.2%), respectively. The growth performance and diarrhea rate of the weaned piglets were analyzed during a 28-d experiment. Maternal dietary supplementation of FOS was shown to reduce the stillbirth and invalid piglet rates (P < 0.05), improve the insulin sensitivity (P < 0.05) and fecal scores (P < 0.05) of sows, increase the abundance of Akkermansia muciniphila (P = 0.016), decrease the abundance of Escherichia coli (P = 0.035), and increase the isovalerate content in feces (P = 0.086). Meanwhile, the placental angiogenesis marker CD31 expression was increased in sows fed FOS diet (P < 0.05). Moreover, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets (P < 0.05) and increased the content of short-chain fatty acids in feces (P < 0.05). Furthermore, only post-weaning dietary FOS supplementation could improve nutrient digestibility of weaned piglets (P < 0.05). Collectively, FOS supplementation in sows can reduce stillbirth rate, perinatal constipation, and insulin resistance, as well as improve placental vascularization barrier. Additionally, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets, but only FOS supplementation in piglets alone at weaning stage could improve their nutrient digestibility.
Collapse
Affiliation(s)
- Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinfeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhou
- Guangzhou Pucheng Biological Technology Co., Guangzhou, 511300, China
| | - Xide Liang
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Facai Li
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Wang HL, Liu Y, Zhou T, Gao L, Li J, Wu X, Yin YL. Uridine affects amino acid metabolism in sow-piglets model and increases viability of pTr2 cells. Front Nutr 2022; 9:1018349. [DOI: 10.3389/fnut.2022.1018349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs an important nucleoside precursor in salvage synthesis pathway of uridine monophosphate, uridine (UR) is the most abundant nucleotide in sow milk. This study aimed to investigate the effects of maternal UR supplementation during second trimester of gestation on reproductive performance and amino acid metabolism of Sows.ResultsResults showed that compared to CON group, the average number of stillborn piglets per litter was significantly reduced (P < 0.05) with higher average piglet weight at birth in UR group (P = 0.083). Besides, dietary UR supplementation significantly increased TP in sow serum, BUN content in cord serum, and TP and ALB in newborn piglet serum (P < 0.05); but decreased AST level in sow serum and BUN level in piglet serum (P < 0.05). Importantly, free amino acids profile in sow serum newborn piglet serum and colostrum was changed by maternal UR supplementation during day 60 of pregnancy, as well as the expression of amino acids transporter (P < 0.05). In addition, from 100 to 2,000 μM UR can increased the viability of pTr2 cells. The UR exhibited higher distribution of G1/M phase of cell cycle at 400 μM compared with 0 μM, and reduced S-phases of cell cycle compared with 0 and 100μM (P < 0.05).ConclusionSupplementation of uridine during day 60 of pregnancy can improve reproductive performance, regulate amino acid metabolism of sows and their offspring, and increase the viability of pTr2 cells.
Collapse
|
7
|
Luise D, Bosi P, Raff L, Amatucci L, Virdis S, Trevisi P. Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens. Front Microbiol 2022; 13:801827. [PMID: 35197953 PMCID: PMC8859173 DOI: 10.3389/fmicb.2022.801827] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 01/20/2023] Open
Abstract
The pressure to increasingly optimize the breeding of livestock monogastric animals resulted in antimicrobials often being misused in an attempt to improve growth performance and counteract diseases in these animals, leading to an increase in the problem of antibiotic resistance. To tackle this problem, the use of probiotics, also known as direct in-feed microbials (DFM), seems to be one of the most promising strategies. Among probiotics, the interest in Bacillus strains has been intensively increased in recent decades in pigs and poultry. The aim of the present review was to evaluate the effectiveness of Bacillus strains as probiotics and as a potential strategy for reducing the misuse of antibiotics in monogastric animals. Thus, the potential modes of action, and the effects on the performance and health of pigs (weaning pigs, lactation and gestation sows) and broilers are discussed. These searches yielded 131 articles (published before January 2021). The present review showed that Bacillus strains could favor growth in terms of the average daily gain (ADG) of post-weaning piglets and broilers, and reduce the incidence of post-weaning diarrhea in pigs by 30% and mortality in broilers by 6-8%. The benefits of Bacillus strains on these parameters showed results comparable to the benefit obtained by the use of antibiotics. Furthermore, the use of Bacillus strains gives promising results in enhancing the local adaptative immune response and in reducing the oxidative stress of broilers. Fewer data were available regarding the effect on sows. Discordant effects have been reported regarding the effect on body weight (BW) and feed intake while a number of studies have supported the hypothesis that feeding probiotics to sows could benefit their reproductive performance, namely the BW and ADG of the litters. Taken all the above-mentioned facts together, this review confirmed the effectiveness of Bacillus strains as probiotics in young pigs and broilers, favoring their health and contributing to a reduction in the misuse of direct in-feed antibiotics. The continuous development and research regarding probiotics will support a decrease in the misuse of antibiotics in livestock production in order to endorse a more sustainable rearing system in the near future.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Lena Raff
- Chr. Hansen, Animal Health and Nutrition, Hørsholm, Denmark
| | - Laura Amatucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|
9
|
Yu X, Fu C, Cui Z, Chen G, Xu Y, Yang C. Inulin and isomalto-oligosaccharide alleviate constipation and improve reproductive performance by modulating motility-related hormones, short-chain fatty acids, and feces microflora in pregnant sows. J Anim Sci 2021; 99:6364795. [PMID: 34487146 DOI: 10.1093/jas/skab257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
Constipation in gestating and lactating sows is common and the inclusion of dietary fiber may help to alleviate this problem. We investigated the effects of inulin (INU) and isomalto-oligosaccharide (IMO), two sources of soluble dietary fiber, on gastrointestinal motility-related hormones, short-chain fatty acids (SCFA), fecal microflora, and reproductive performance in pregnant sows. On day 64 of gestation, 30 sows were randomly divided into three groups and fed as follows: a basal diet, a basal diet with 0.5% INU, and a basal diet with 0.5% IMO. We found that INU and IMO significantly modulated the levels of gastrointestinal motility-related hormones, as evidenced by an increase in substance P (P < 0.05), and a decrease in the vasoactive intestinal peptide concentrations (P < 0.05), indicating the capacity of INU and IMO to alleviate constipation. Furthermore, IMO enhanced the concentrations of acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids in the feces (P < 0.05). High-throughput sequencing showed that IMO and INU increased the fecal microflora α- and β-diversity (P < 0.05). Methanobrevibacter was more abundant (P < 0.05), whereas the richness of Turicibacter was lower in the INU and IMO groups than in the control group (P < 0.05). In addition, IMO significantly increased litter size (P < 0.05). Overall, our findings indicate that INU and IMO can relieve constipation, optimize intestinal flora, and promote reproductive performance in pregnant sows.
Collapse
Affiliation(s)
- Xiaorong Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology·College of Veterinary Medcine, Zhejiang A & F University, Hangzhou 311300, China
| | - Chunsheng Fu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology·College of Veterinary Medcine, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhenchuan Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology·College of Veterinary Medcine, Zhejiang A & F University, Hangzhou 311300, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology·College of Veterinary Medcine, Zhejiang A & F University, Hangzhou 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology·College of Veterinary Medcine, Zhejiang A & F University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology·College of Veterinary Medcine, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
10
|
Chen H, Wang C, Wang Y, Chen Y, Wan M, Zhu J, Zhu A. Effects of soft pellet creep feed on pre-weaning and post-weaning performance and intestinal development in piglets. Anim Biosci 2020; 34:714-723. [PMID: 32810933 PMCID: PMC7961284 DOI: 10.5713/ajas.20.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/02/2020] [Indexed: 01/29/2023] Open
Abstract
Objective This study aimed to determine the effects of soft pellet creep feed (SPCF) on growth performance and intestinal development in piglets. Methods A total of 18 sows and their litters of crossbred piglets (14±2 days, 3.73±0.72 kg) were assigned to one of three dietary groups receiving i) powder creep feed (PCF), ii) hard pellet creep feed (HPCF) or iii) SPCF during the pre-weaning period. After weaning, piglets were selected for continuous evaluation of the three diets on growth performance and intestinal health. Results In the pre-weaning period, the average daily feed intake and average daily dry matter intake were significantly higher in the SPCF group than the HPCF group (p<0.05). In the post-weaning and entire experimental period, the different diets had no significant effect on growth performance. At 10 d after weaning, the serum glucose concentration was lower in the SPCF group (p<0.05) than the other groups; a higher (p<0.05) villus height and lower (p<0.05) crypt depth in the jejunum were also observed in the SPCF group than the other groups; Meanwhile, in the duodenum and jejunum, the SPCF group had a higher (p<0.05) villus height to crypt depth ratio than the other groups; Furthermore, the higher (p<0.05) threshold cycle values of lactic acid bacteria and lower (p<0.05) threshold cycle values of Clostridium, Enterobacter and Escherichia coli were also observed in the SPCF group, and the sucrase and maltase activity was higher (p<0.05) in the SPCF group than the other groups in duodenum and ileum. Conclusion The SPCF improved pre-weaning feed intake and decreased the negative effects of weaning stress in the intestine in piglets.
Collapse
Affiliation(s)
- Hao Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chunwei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
| | - You Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yilin Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiadong Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Aixia Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China
| |
Collapse
|
11
|
Rooney HB, O'Driscoll K, Silacci P, Bee G, O'Doherty JV, Lawlor PG. Effect of dietary L-carnitine supplementation to sows during gestation and/or lactation on sow productivity, muscle maturation and lifetime growth in progeny from large litters. Br J Nutr 2020; 124:1-36. [PMID: 32127055 DOI: 10.1017/s0007114520000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic selection for increased sow prolificacy has resulted in decreased mean piglet birth-weight. This study aimed to investigate the effect of L-carnitine (CAR) supplementation to sows during gestation and/or lactation on sow productivity, semitendinosus muscle (STM) maturity, and lifetime growth in progeny. Sixty-four sows were randomly assigned to one of four dietary treatments at breeding until weaning; CONTROL (0mg CAR/d), GEST (125mg CAR/d during gestation), LACT (250mg CAR/d during lactation), and BOTH (125mg CAR/d during gestation & 250mg CAR/d during lactation). The total number of piglets born per litter was greater for sows supplemented with CAR during gestation (17.3 v 15.8 ± 0.52; P<0.05). Piglet birth-weight (total and live) was unaffected by sow treatment (P>0.05). Total myofibre number (P=0.08) and the expression level of selected myosin heavy chain genes in the STM (P<0.05) was greater in piglets of sows supplemented with CAR during gestation. Pigs from sows supplemented with CAR during gestation had lighter carcasses at slaughter than pigs from non-supplemented sows during gestation (83.8 v 86.7 ± 0.86kg; P<0.05). In conclusion, CAR supplementation during gestation increased litter size at birth without compromising piglet birth-weight. Results also showed that the STM of piglets born to sows supplemented with CAR during gestation was more developed at birth. However, carcass weight at slaughter was reduced in progeny of sows supplemented with CAR during gestation. The CAR supplementation strategy applied during gestation in this study could be utilized by commercial pork producers to increase sow litter size and improve offspring muscle development.
Collapse
Affiliation(s)
- Hazel B Rooney
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - K O'Driscoll
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - P Silacci
- Institute for Livestock Sciences, Agroscope, Tioleyre, 1725 Posieux, Switzerland
| | - G Bee
- Institute for Livestock Sciences, Agroscope, Tioleyre, 1725 Posieux, Switzerland
| | - J V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - P G Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|