1
|
Llompart B, Dalmau E, Umaña M, Femenia A. Physicochemical Characterization and Antioxidant Properties of Cellulose-Rich Extracts Obtained from Carob ( Ceratonia siliqua L.) Pulp for Preparation of Cellulose-Rich Gels. Gels 2025; 11:145. [PMID: 39996688 PMCID: PMC11854539 DOI: 10.3390/gels11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
The carob tree (Ceratonia siliqua L.) is a defining species of the Mediterranean region, and its fruit, the carob pod, has seen a notable increase in economic interest in recent years, primarily due to the production of locust bean gum (E410), a widely used food additive derived from the seeds. The remainder of the fruit, the carob pulp, comprises 80-90% of the fruit's weight and is typically considered a by-product, with its primary application being in animal feed. This study focused on obtaining cellulose-rich extracts from selected carob varieties cultivated in the Mediterranean region. A comprehensive physicochemical characterization of these cellulose-rich fractions was conducted, including the assessment of their antioxidant properties, specifically total phenolics and antioxidant capacity measured by the FRAP, ABTS, and CUPRAC methods. The findings reveal that carob pulp is an excellent source of carbohydrates, including soluble sugars, which constitute 33-45% of the pulp's fresh weight, depending on the variety, and cell wall polysaccharides. The cell wall polymers, with cellulose as the predominant component, account for approximately 45% of the fresh pulp weight. Notable amounts of other polysaccharides, such as pectins and hemicelluloses, were also identified. Among the studied varieties, Bugadera and Rotjal stood out as exceptional sources of cellulose-rich extracts. Carob pulp was also found to be rich in antioxidant compounds, reflected in its high antioxidant capacity. In particular, the Bugadera variety, grown under irrigated conditions, exhibited a significant concentration of phenolic compounds (24.4 mg gallic acid equivalents per gram of pulp) and high antioxidant activity across all methods used, with ABTS measurements reaching up to 391.5 mg Trolox equivalents per gram of pulp. In conclusion, these results underscore the significant potential of carob pulp as a source of valuable cellulose-rich extracts, offering applications beyond its traditional use as animal feed. By exploring these new possibilities, the economic and environmental sustainability of carob cultivation could be greatly enhanced, contributing to the broader valorization of this iconic Mediterranean fruit.
Collapse
Affiliation(s)
| | | | | | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km 7.5, 07122 Palma, Spain; (B.L.); (E.D.); (M.U.)
| |
Collapse
|
2
|
Chik MAW, Yusof R, Shafie MH, Hanaphi RM. Extraction optimisation and characterisation of Artocarpus integer peel pectin by malonic acid-based deep eutectic solvents using response surface methodology. Int J Biol Macromol 2024:135737. [PMID: 39293618 DOI: 10.1016/j.ijbiomac.2024.135737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Traditional pectin extraction methods involve strong acids, which are environmentally harmful. This study explores an innovative approach using Malonic Acid (MA)-based Deep Eutectic Solvents (DES) to extract pectin from Artocarpus integer Peel (AIPP), optimised through Response Surface Methodology (RSM). The extracted AIPP-A and AIPP-B from ChCl-MA and ChDHCit-MA DES, respectively, were characterised for yield, pH, solubility, Degree of Esterification (DE), Water and Oil Holding Capacity (WHC and OHC). The experimental values aligned with RSM model predictions, with low standard deviations: 0.7300 for ChCl-MA and 0.1531 for ChDHCit-MA. Optimal extraction conditions for AIPP-A were 3.27 % ChCl-MA, 1.28 h extraction time, 50.44 °C temperature, and a 1:40 g/mL solid-to-liquid ratio. For AIPP-B, the conditions were 4.95 % ChDHCit-MA, 2.04 h extraction time, 79.65 °C temperature, and a 1:50 g/mL solid-to-liquid ratio. ChCl-MA yielded 30.97 % AIPP, which was higher than that of ChDHCit-MA (27.99 %). Both AIPP demonstrated desirable properties such as low pH, high solubility, and significant DE. AIPP-A exhibited a greater DE (58.40 %) compared to AIPP-B (32.4 %) contributed to its lower WHC and higher OHC. In conclusion, RSM-based optimisation of AIPP extraction with DES is effective in producing pectin that is suitable for use as a gelling agent, preservative, and stabiliser in the food industry.
Collapse
Affiliation(s)
- Mohammad Amin Wan Chik
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
| | - Rizana Yusof
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia.
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Roziana Mohamed Hanaphi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
3
|
Umaña M, Simal S, Dalmau E, Turchiuli C, Chevigny C. Evaluation of Different Pectic Materials Coming from Citrus Residues in the Production of Films. Foods 2024; 13:2138. [PMID: 38998643 PMCID: PMC11241157 DOI: 10.3390/foods13132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
This article explores the use of citrus residues as a source of different pectic materials for packaging film production: a water-soluble orange residue extract (WSE) (~5% pectin), semi-pure pectins extracted in citric acid (SP) (~50% pectin), and commercial pure citrus pectins (CP). First, these materials were characterized in terms of chemical composition. Then, films were produced using them pure or mixed with chitosan or glycerol through solvent-casting. Finally, antioxidant activity, functional properties (e.g., mechanical and gas barrier properties), and visual appearance of the films were assessed. WSE films showed the highest antioxidant activity but the lowest mechanical strength with the highest elongation at break (EB) (54%); incorporating chitosan increased the films' strength (Young's modulus 35.5 times higher). SP films showed intermediate mechanical properties, reinforced by chitosan addition (Young's modulus 4.7 times higher); they showed an outstanding dry O2 barrier. CP films showed a similar O2 barrier to SP films and had the highest Young's modulus (~29 MPa), but their brittleness required glycerol for improved pliability, and chitosan addition compromised their surface regularity. Overall, the type of pectic material determined the film's properties, with less-refined pectins offering just as many benefits as pure commercial ones.
Collapse
Affiliation(s)
- Mónica Umaña
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Susana Simal
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Esperanza Dalmau
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Christelle Turchiuli
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| | - Chloé Chevigny
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| |
Collapse
|
4
|
Comas-Serra F, Miró JL, Umaña MM, Minjares-Fuentes R, Femenia A, Mota-Ituarte M, Pedroza-Sandoval A. Role of acemannan and pectic polysaccharides in saline-water stress tolerance of Aloe vera (Aloe barbadensis Miller) plant. Int J Biol Macromol 2024; 268:131601. [PMID: 38626833 DOI: 10.1016/j.ijbiomac.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.
Collapse
Affiliation(s)
- Francesca Comas-Serra
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - José Luis Miró
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - Mónica M Umaña
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - Rafael Minjares-Fuentes
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain; Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México.
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - María Mota-Ituarte
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Carretera Gómez Palacio-Chihuahua km 38, Bermejillo, Durango C.P. 35230, México
| | - Aurelio Pedroza-Sandoval
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Carretera Gómez Palacio-Chihuahua km 38, Bermejillo, Durango C.P. 35230, México
| |
Collapse
|
5
|
Comas-Serra F, Estrada P, Minjares-Fuentes R, Femenia A. Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera ( Aloe barbadensis Miller) Gel. Gels 2023; 9:552. [PMID: 37504431 PMCID: PMC10379354 DOI: 10.3390/gels9070552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera (Aloe barbadensis Miller) gel is a frequently used ingredient in many food pro-ducts, particularly beverages, due to its reported health benefits. Studies have identified acemannan, a polysaccharide rich in mannose units which are partially or fully acetylated, as the primary bioactive compound in Aloe vera gel. The acemannan content and its degree of acetylation (DA) were measured in 15 different commercial beverages containing Aloe vera at varying concentrations (from 30% to 99.8%) as listed on the label. Other biopolymers such as pectins, hemicelluloses, and cellulose were also evaluated. Flavoured beverages (seven samples labelled as containing from 30% to 77% Aloe vera) presented low levels of acemannan (<30 mg/100 g of fresh sample) and were fully deacetylated in most cases. These samples had high levels of other polymers such as pectins, hemicelluloses, and cellulose, likely due to the addition of fruit juices for flavour. Unflavoured beverages (eight samples, with Aloe vera concentrations above 99% according to their labels) had variable levels of acemannan, with only three containing more than 160 mg/100 g of fresh sample. In fact, four samples had less than 35 mg acemannan/100 g of fresh sample. DA levels in all but one sample were lower than 35%, possibly due to processing techniques such as pasteurization causing degradation and deacetylation of the acemannan polymer. Legislation regarding Aloe vera products is limited, and manufacturers are not required to disclose the presence or quality of bioactive compounds in their products, leaving consumers uncertain about the true properties of the products they purchase.
Collapse
Affiliation(s)
- Francesca Comas-Serra
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
| | - Paula Estrada
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
| | - Rafael Minjares-Fuentes
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, Gómez Palacio 35010, Durango, Mexico
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Odun-Ayo F, Reddy L. Potential Biomedical Applications of Modified Pectin as a Delivery System for Bioactive Substances. POLYSACCHARIDES 2023; 4:1-32. [DOI: 10.3390/polysaccharides4010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pectin is a polysaccharide that has been recently gaining attention because it is renewable, inexpensive, biocompatible, degradable, non-toxic, non-polluting, and has mechanical integrity. The recent extraction techniques and modification to the structural property of pectin have led to the modified pectin whose chemical and surface functional groups yield galacturonic acid and galactose contents which are primarily responsible for its improved and better use in biomedical applications including drug delivery and thus producing high-value products. Major attention on modified pectin has been focused on the aspect of its bioactive functionalities that opposes cancer development. Nevertheless, modified pectin can be combined with a wide range of biopolymers with unique characteristics and activities which thus enhances its application in different areas. This has enabled the current applications of modified pectin through different approaches in addition to the prominent anti-cancer functional capabilities, which were reviewed. Furthermore, this paper highlights the potential of modified pectin as a delivery system of bioactive substances, its synergistic and prebiotic effects, gut microbiota effect and antiviral properties amongst other roles applicable in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Frederick Odun-Ayo
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| | - Lalini Reddy
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| |
Collapse
|
7
|
Artificial Neural Networks to Optimize Oil-in-Water Emulsion Stability with Orange By-Products. Foods 2022; 11:foods11233750. [PMID: 36496559 PMCID: PMC9739075 DOI: 10.3390/foods11233750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The use of artificial neural networks (ANNs) is proposed to optimize the formulation of stable oil-in-water emulsions (oil 6% w/w) with a flour made from orange by-products (OBF), rich in pectins (21 g/100 g fresh matter), in different concentrations (0.95, 2.38, and 3.40% w/w), combined with or without soy proteins (0.3 and 0.6% w/w). Emulsions containing OBF were stable against coalescence and flocculation (with 2.4 and 3.4% OBF) and creaming (3.4% OBF) for 24 h; the droplets' diameter decreased up to 44% and the viscosity increased up to 37% with higher concentrations of OBF. With the protein addition, the droplets' diameter decreased by up to 70%, and flocculation increased. Compared with emulsions produced with purified citrus pectins (0.2 and 0.5% w/w), OBF emulsions exhibited up to 32% lower viscosities, 129% larger droplets, and 45% smaller Z potential values. Optimization solved with ANNs minimizing the droplet size and the emulsion instability resulted in OBF and protein concentrations of 3.16 and 0.14%, respectively. The experimental characteristics of the optimum emulsion closely matched those predicted by ANNs demonstrating the usefulness of the proposed method.
Collapse
|
8
|
Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Khubber S, Kazemi M, Amiri Samani S, Lorenzo JM, Simal-Gandara J, Barba FJ. Structural-functional Variability in Pectin and Effect of Innovative Extraction Methods: An Integrated Analysis for Tailored Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sucheta Khubber
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Sara Amiri Samani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jose M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Avd. Parque Tecnológico De Galicia, San Cibrao Das Viñas, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Francisco J. Barba
- Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Universitat De València, Burjassot, València, Spain
| |
Collapse
|
10
|
Patience NA, Schieppati D, Boffito DC. Continuous and pulsed ultrasound pectin extraction from navel orange peels. ULTRASONICS SONOCHEMISTRY 2021; 73:105480. [PMID: 33601279 PMCID: PMC7898032 DOI: 10.1016/j.ultsonch.2021.105480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 05/10/2023]
Abstract
Pectin is a valuable product (up to 30 $kg-1) that makes-up 20-30% of an orange's peel. The commercial extraction is lengthy (up to 6h) and energy intensive as it requires heating aqueous solutions (60-100 °C). Ultrasound speeds up the extraction process reducing processing time by macroscopic and microscopic mixing by acoustic cavitation. We adopted an ultrasonic horn to deliver a rated power of 500W at amplitudes of 20%, 40%, and 60% with and without pulsation to extract pectin from waste orange peels. These correspond to power densities of 0.08Wml-1, 0.16Wml-1 and 0.24Wml-1, respectively. The extractions operated at a pH of either 2 or 3. The experimental data agree with the fitted values from the statistical model (R2=95.5%). The model confirms our predictions that yield increases with amplitude/power density and decreasing pH. The highest yield was (11%) at a pH of 2 and with continuous ultrasonic irradiation at a power density of 0.24Wml-1. There is only a 1.3% difference between this datum and pulse ultrasound mode (1 s on/1 s off) at the same conditions - a Student's t test confirmed that there was no significant difference in yield between continuous and pulse mode. However, pulsing is more efficient in that it consumes less than half the energy of continuous operation (80kJ vs. 190kJ).
Collapse
Affiliation(s)
- N A Patience
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal, H3C 3A7 Québec, Canada
| | - D Schieppati
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal, H3C 3A7 Québec, Canada
| | - D C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal, H3C 3A7 Québec, Canada.
| |
Collapse
|
11
|
Reche C, Rosselló C, Umaña MM, Eim V, Simal S. Mathematical Modelling of Ultrasound-Assisted Extraction Kinetics of Bioactive Compounds from Artichoke By-Products. Foods 2021; 10:foods10050931. [PMID: 33922734 PMCID: PMC8146431 DOI: 10.3390/foods10050931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.
Collapse
|
12
|
Haj Romdhane M, Beltifa A, Mzoughi Z, Rihouey C, Ben Mansour H, Majdoub H, Le Cerf D. Optimization of extraction with salicylic acid, rheological behavior and antiproliferative activity of pectin from Citrus sinensis peels. Int J Biol Macromol 2020; 159:547-556. [PMID: 32439441 DOI: 10.1016/j.ijbiomac.2020.05.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
A Box-Behnken design was used to optimize extraction temperature, extraction time and concentration of the salicylic acid to obtain a maximum polysaccharide yield from Citrus sinensis peels. The optimal settings were: extraction time 3 h, extraction temperature 80 °C and concentration of the salicylic acid 1.5%. Under these conditions, the experimental yield and uronic acid content were 11.74% and 66.9% respectively. Preliminary characterization was performed via FT-IR, SEC/MALS/VD/DRI and GC-MS after hydrolysis. SEC analysis showed that the extracted polysaccharide had a weight average molar mass of 350 kDa and an intrinsic viscosity of 640 mL/g. The GC-MS results revealed that the extracted polysaccharide was composed of arabinose 56.7%, galactose 17.8%, xylose 13.8%, rhamnose 5.1%, mannose 2.5% and glucose 1.5% suggested a rhamnogalacturonan pectin type I with a degree of esterification of 50.9% (IRTF). The flow curve and the dynamic frequency sweep were obtained at 10, 20, 30 and 40 g/L in water and at 30 g/L in presence of CaCl2 or NaCl at 1 mol/L. The solutions showed shear-thinning behavior fitted with Ostwald-De Waele model, except 10 g/L with a Newtonian behavior. The apparent viscosity and, the G' and G" moduli increase with PACO concentration in agreement with a slow-down of the dynamic chain. In the presence of CaCl2 or NaCl the reduction of electrostatic repulsions between pectin chains decreases the rheological parameters. The effect is less sensitive with CaCl2 due to intermolecular interactions. The antiproliferative activity of the extracted pectin on human Caco-2 and Hep-2 cells was very interesting with an IC50 1.4 and 1.8 μg/mL respectively.
Collapse
Affiliation(s)
- Mariem Haj Romdhane
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Asma Beltifa
- University of Monastir, Research Unit of Analysis and Process Applied to Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia, Tunisia
| | - Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Christophe Rihouey
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Hedi Ben Mansour
- University of Monastir, Research Unit of Analysis and Process Applied to Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia, Tunisia
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 76000 Rouen, France.
| |
Collapse
|
13
|
Otu PNY, Osae R, Abdullateef MT, Cunshan Z, Xiaojie Y, Azumah BK. Characterization of
Moringa oleifera
leaf polysaccharides extracted by coupling ionic liquid separation system with ultrasound irradiation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Phyllis Naa Yarley Otu
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
- School of Applied SciencesAccra Technical University Accra Ghana
| | - Richard Osae
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
| | | | - Zhou Cunshan
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
| | - Yu Xiaojie
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
| | | |
Collapse
|