1
|
Cormier F, Housni S, Dumont F, Villard M, Cochand-Priollet B, Mercier-Nomé F, Perlemoine K, Bertherat J, Groussin L. NF-κB signaling activation and roles in thyroid cancers: implication of MAP3K14/NIK. Oncogenesis 2023; 12:55. [PMID: 37973791 PMCID: PMC10654696 DOI: 10.1038/s41389-023-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Among follicular-derived thyroid cancers (TC), those with aggressive behavior and resistance to current treatments display poor prognosis. NF-κB signaling pathways are involved in tumor progression of various cancers. Here, we finely characterize the NF-κB pathways and their involvement in TC. By using immunoblot and gel shift assays, we demonstrated that both classical and alternative NF-κB pathways are activated in ten TC-derived cell lines, leading to activated RelA/p50 and RelB/p50 NF-κB dimers. By analyzing the RNAseq data of the large papillary thyroid carcinoma (PTC) cohort from The Cancer Genome Atlas (TCGA) project, we identified a tumor progression-related NF-κB signature in BRAFV600E mutated-PTCs. That corroborated with the role of RelA and RelB in cell migration and invasion processes that we demonstrated specifically in BRAFV600E mutated-cell lines, together with their role in the control of expression of genes implicated in invasiveness (MMP1, PLAU, LCN2 and LGALS3). We also identified NF-κB-inducing kinase (NIK) as a novel actor of the constitutive activation of the NF-κB pathways in TC-derived cell lines. Finally, its implication in invasiveness and its overexpression in PTC samples make NIK a potential therapeutic target for advanced TC treatment.
Collapse
Affiliation(s)
- Françoise Cormier
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France.
| | - Selma Housni
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service de Médecine Nucléaire, Assistance Publique-Hopitaux de Paris, Hopital Pitié-Salpêtrière, F-75013, Paris, France
| | - Florent Dumont
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- UMS IPSIT, Université Paris-Saclay, INSERM, CNRS, F-91400, Orsay, France
| | - Mélodie Villard
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
| | - Béatrix Cochand-Priollet
- Service de Pathologie, Assistance Publique-Hopitaux de Paris, Hopital Cochin, Université Paris Cité, F-75014, Paris, France
| | | | - Karine Perlemoine
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
| | - Jérôme Bertherat
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Cochin AP-HP Centre, F-75014, Paris, France
| | - Lionel Groussin
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Cochin AP-HP Centre, F-75014, Paris, France
| |
Collapse
|
2
|
Post-Transcriptional Regulation of Alpha One Antitrypsin by a Proteasome Inhibitor. Int J Mol Sci 2020; 21:ijms21124318. [PMID: 32560429 PMCID: PMC7352753 DOI: 10.3390/ijms21124318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Alpha one antitrypsin (α1AT), a serine proteinase inhibitor primarily produced by the liver, protects pulmonary tissue from neutrophil elastase digestion. Mutations of the SERPINA1 gene results in a misfolded α1AT protein which aggregates inside hepatocytes causing cellular damage. Therefore, inhibition of mutant α1AT production is one practical strategy to alleviate liver damage. Here we show that proteasome inhibitors can selectively downregulate α1AT expression in human hepatocytes by suppressing the translation of α1AT. Translational suppression of α1AT is mediated by phosphorylation of eukaryotic translation initiation factor 2α and increased association of RNA binding proteins, especially stress granule protein Ras GAP SH3 binding protein (G3BP1), with α1AT mRNA. Treatment of human-induced pluripotent stem cell-derived hepatocytes with a proteasome inhibitor also results in translational inhibition of mutant α1AT in a similar manner. Together we revealed a previously undocumented role of proteasome inhibitors in the regulation of α1AT translation.
Collapse
|
3
|
Pratheeshkumar P, Siraj AK, Divya SP, Parvathareddy SK, Begum R, Melosantos R, Al-Sobhi SS, Al-Dawish M, Al-Dayel F, Al-Kuraya KS. Downregulation of SKP2 in Papillary Thyroid Cancer Acts Synergistically With TRAIL on Inducing Apoptosis via ROS. J Clin Endocrinol Metab 2018; 103:1530-1544. [PMID: 29300929 DOI: 10.1210/jc.2017-02178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 02/09/2023]
Abstract
CONTEXT AND OBJECTIVE S-phase kinase protein 2 (SKP2) is an F-box protein with proteasomal properties and has been found to be overexpressed in a variety of cancers. However, its role in papillary thyroid cancer (PTC) has not been fully elucidated. EXPERIMENTAL DESIGN SKP2 expression was assessed by immunohistochemistry in a tissue microarray format on a cohort of >1000 PTC samples. In vitro and in vivo studies were performed using proteasome inhibitor bortezomib and proapoptopic death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) either alone or in combination on PTC cell lines. RESULTS SKP2 was overexpressed in 45.5% of PTC cases and was significantly associated with extrathyroidal extension (P = 0.0451), distant metastasis (P = 0.0435), and tall cell variant (P = 0.0271). SKP2 overexpression was also directly associated with X-linked inhibitor of apoptosis protein overexpression (P < 0.0001) and Bcl-xL overexpression (P = 0.0005) and inversely associated with death receptor 5 (P < 0.0001). The cotreatment of bortezomib and TRAIL synergistically induced apoptosis via mitochondrial apoptotic pathway in PTC cell lines. Furthermore, bortezomib and TRAIL synergistically induced reactive oxygen species (ROS) generation and caused death receptor 5 upregulation through activation of the extracellular signal-regulated kinase-C/EBP homologous protein signaling cascade. Finally, bortezomib treatment augmented the TRAIL-mediated anticancer effect on PTC xenograft tumor growth in nude mice. CONCLUSION These data suggest that SKP2 is a potential therapeutic target in PTC and that a combination of bortezomib and TRAIL might be a viable therapeutic option for the treatment of patients with aggressive PTC.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Roxanne Melosantos
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al-Dawish
- Department of Diabetes and Endocrinology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zhang L, Boufraqech M, Lake R, Kebebew E. Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer. Oncotarget 2017; 7:16517-28. [PMID: 26934320 PMCID: PMC4941332 DOI: 10.18632/oncotarget.7760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies, with no effective treatment currently available. Previously, we identified agents active against ATC cells, both in vitro and in vivo, using quantitative high-throughput screening of 3282 clinically approved drugs and small molecules. Here, we report that combining two of these active agents, carfilzomib, a second-generation proteasome inhibitor, and CUDC-101, a histone deacetylase and multi-kinase inhibitor, results in increased, synergistic activity in ATC cells. The combination of carfilzomib and CUDC-101 synergistically inhibited cellular proliferation and caused cell death in multiple ATC cell lines harboring various driver mutations observed in human ATC tumors. This increased anti-ATC effect was associated with a synergistically enhanced G2/M cell cycle arrest and increased caspase 3/7 activity induced by the drug combination. Mechanistically, treatment with carfilzomib and CUDC-101 increased p21 expression and poly (ADP-ribose) polymerase protein cleavage. Our results suggest that combining carfilzomib and CUDC-101 would offer an effective therapeutic strategy to treat ATC.
Collapse
Affiliation(s)
- Lisa Zhang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Jin S, Borkhuu O, Bao W, Yang YT. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J Clin Med Res 2016; 8:284-96. [PMID: 26985248 PMCID: PMC4780491 DOI: 10.14740/jocmr2480w] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer is a common malignancy of endocrine system, and has now become the fastest increasing cancer among all the malignancies. The development, progression, invasion, and metastasis are closely associated with multiple signaling pathways and the functions of related molecules, such as Src, Janus kinase (JAK)-signal transducers and activators of transcription (STAT), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, NF-κB, thyroid stimulating hormone receptor (TSHR), Wnt-β-catenin and Notch signaling pathways. Each of the signaling pathways could exert its function singly or through network with other pathways. These pathways could cooperate, promote, antagonize, or interact with each other to form a complex network for the regulation. Dysfunction of this network could increase the development, progression, invasion, and metastasis of thyroid cancer. Inoperable thyroid cancer still has a poor prognosis. However, signaling pathway-related targeted therapies offer the hope of longer quality of meaningful life for this small group of patients. Signaling pathway-related targets provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. In the present work, the advances in these signaling pathways and targeted treatments of thyroid cancer were reviewed.
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Oyungerel Borkhuu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yun-Tian Yang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Zhao S, Wang Q, Li Z, Ma X, Wu L, Ji H, Qin G. LDOC1 inhibits proliferation and promotes apoptosis by repressing NF-κB activation in papillary thyroid carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:146. [PMID: 26637328 PMCID: PMC4670541 DOI: 10.1186/s13046-015-0265-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/01/2015] [Indexed: 02/01/2023]
Abstract
Background The incidence of thyroid cancer has progressively increased over the past few decades, and the most frequent types of this cancer are papillary thyroid carcinoma (PTC) and small primary tumors. In PTC, oncogene activation is known to occur at a high frequency. However, the potential roles of tumor suppressor genes in thyroid carcinogenesis remain unclear. LDOC1 was first identified as a gene encoding a leucine zipper protein whose expression was decreased in a series of pancreatic and gastric cancer cell lines. In this study, we aimed to determine the status of LDOC1 in PTC and identify its mechanistic role in PTC pathogenesis. Methods LDOC1 expression was evaluated in fresh samples and stored specimens of human PTC and contralateral normal tissues by performing quantitative reverse transcription-PCR and immunohistochemical staining. The correlation to nuclear p65 content in the stored specimens was analyzed. Moreover, the basal level of LDOC1 in two human PTC-derived cell lines (BCPAP and TPC-1) compared with normal thyroid tissue was determined. Human LDOC1 cDNA was inserted into a lentiviral vector and transduced into TPC-1 cells. TPC-1 cells overexpressing LDOC1/GFP (Lv-LDOC1) or negative control GFP (Lv-NC) were stimulated with TNFα or recombinant TGF-β1, and then cell proliferation, cell cycle distribution, and apoptosis were assessed. Western blotting was used to examine the expression of p65, IκBα, c-Myc, Bax, and Bcl-xL, and a luciferase reporter assay was used to measure NF-κB activity stimulated by TNFα. Statistical significance was determined using Student’s t tests or ANOVA and Newman-Keuls multiple comparison tests. Pearson chi-square test was used to analyze possible associations. Results LDOC1 expression was significantly downregulated in PTC specimens as compared with the expression in normal thyroid tissues, and this downregulation was associated with an increase in tumor size (P < 0.05). There is a correlation between LDOC1 and nuclear P65 expression in human PTC tissues (P < 0.01). Lentivirus-mediated restoration of LDOC1 expression in TPC-1 cells characterized by low level of LDOC1 expression suppressed proliferation and induced apoptosis by inhibiting NF-κB activation, and LDOC1-overexpressing TPC-1 cells recovered responsiveness to TGF-β1 antiproliferative signaling. Conclusions LDOC1 might function as a tumor suppressor gene in PTC by inhibiting NF-κΒ signaling, and thus might represent a promising therapeutic target in patients with PTC.
Collapse
Affiliation(s)
- Shuiying Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Qingzhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Tsumagari K, Abd Elmageed ZY, Sholl AB, Friedlander P, Abdraboh M, Xing M, Boulares AH, Kandil E. Simultaneous suppression of the MAP kinase and NF-κB pathways provides a robust therapeutic potential for thyroid cancer. Cancer Lett 2015. [PMID: 26208433 DOI: 10.1016/j.canlet.2015.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The MAP kinase and NF-κB signaling pathways play an important role in thyroid cancer tumorigenesis. We aimed to examine the therapeutic potential of dually targeting the two pathways using AZD6244 and Bortezomib in combination. We evaluated their effects on cell proliferation, cell-cycle progression, apoptosis, cell migration assay, and the activation of the MAPK pathway in vitro and the in vivo using tumor size and immunohistochemical changes of Ki67 and ppRB. We found inhibition of cell growth rate by 10%, 20%, and 56% (p <0.05), migration to 55%, 61%, and 29% (p <0.05), and induction of apoptosis to 10%, 15%, and 38% (p <0.05) with AZD6244, Bortezomib, or combination, respectively. Induction of cell cycle arrest occurred only with drug combination. Dual drug treatment in the xenograft model caused a 94% reduction in tumor size (p <0.05) versus 15% with AZD6244 and 34% with Bortezomib (p < 0.05) and also reduced proliferative marker Ki67, and increased pRb dephosphorylation. Our results demonstrate a robust therapeutic potential of combining AZD6244 and Bortezomib as an effective strategy to overcome drug resistance encountered in monotherapy in the treatment of thyroid cancer, strongly supporting clinical trials to further test this strategy.
Collapse
Affiliation(s)
- Koji Tsumagari
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zakaria Y Abd Elmageed
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew B Sholl
- Departments of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Paul Friedlander
- Departments of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed Abdraboh
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mingzhao Xing
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Mehta A, Zhang L, Boufraqech M, Zhang Y, Patel D, Shen M, Kebebew E. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer. Endocr Relat Cancer 2015; 22:319-29. [PMID: 25972243 DOI: 10.1530/erc-14-0510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies. Currently, there is no standard or effective therapy for ATC. Drug repurposing for cancer treatment is an emerging approach for identifying compounds that may have antineoplastic effects. The aim of this study was to use high-throughput drug library screening to identify and subsequently validate novel therapeutic agents with anticancer effects in ATC. We performed quantitative high-throughput screening (qHTS) in ATC cell lines (SW-1736, 8505C, and C-643), using a compound library of 3282 drugs. qHTS identified 100 compounds that were active in all three ATC cell lines. Proteasome inhibitors were one of the most active drug categories according to enrichment analysis. Of the three proteasome inhibitors screened, a second-generation proteasome inhibitor, carfilzomib, was the most active. Treatment of ATC cells with carfilzomib significantly inhibited cellular proliferation and induced G2/M cell cycle arrest and caspase-dependent apoptosis. Mechanistically, carfilzomib increased expression of p27 (CDKN1B) and decreased expression of the anti-apoptotic protein ATF4. Pretreatment with carfilzomib reduced in vivo metastases (lung, bone, liver, and kidney) and disease progression, and decreased N-cadherin expression. Carfilzomib treatment of mice with established, widely metastatic disease significantly increased their survival, without significant toxicity. Our findings support the use or clinical study of carfilzomib as a therapeutic option in patients with advanced and metastatic ATC.
Collapse
Affiliation(s)
- Amit Mehta
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Lisa Zhang
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Myriem Boufraqech
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Yaqin Zhang
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Dhaval Patel
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Min Shen
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Li X, Abdel-Mageed AB, Mondal D, Kandil E. The nuclear factor kappa-B signaling pathway as a therapeutic target against thyroid cancers. Thyroid 2013; 23:209-18. [PMID: 23273524 DOI: 10.1089/thy.2012.0237] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The nuclear factor kappa-B (NF-κB) proteins, a family of transcription factors found virtually in all cells, are known to play crucial roles in the growth of a number of human malignancies. The ability of NF-κB to target a large number of genes that regulate cell proliferation, differentiation, survival, and apoptosis, provides clues toward its deregulation during the process of tumorigenesis, metastatic progression, and therapeutic resistance of tumors. SUMMARY In addition to the signaling pathways known to be involved in thyroid tumorigenesis, such as the mitogen-activated protein kinase and janus kinase cascades, studies implicate the NF-κB pathway in the development of both less aggressive thyroid cancers, papillary and follicular adenocarcinomas, and progression to aggressive thyroid cancers, such as anaplastic adenocarcinomas. A constitutively activated NF-κB pathway also closely links Hashimoto's thyroiditis with increased incidence of thyroid cancers. The NF-κB pathway is becoming one of the major targets for drug development, and a number of compounds have been developed to inhibit this pathway at different levels in cancer cells. Some of these targets have shown promising outcomes in both in vitro and in vivo investigations and a handful of them have shown efficacy in the clinical setting. CONCLUSIONS This review discusses the recent findings that demonstrate that the inhibition of NF-κB, alone or with other signaling pathway inhibitors may be of significant therapeutic benefits against aggressive thyroid cancers.
Collapse
Affiliation(s)
- Xinying Li
- Department of Surgery and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
10
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Rastogi N, Mishra DP. Therapeutic targeting of cancer cell cycle using proteasome inhibitors. Cell Div 2012; 7:26. [PMID: 23268747 PMCID: PMC3584802 DOI: 10.1186/1747-1028-7-26] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022] Open
Abstract
Proteasomes are multicatalytic protease complexes in the cell, involved in the non-lysosomal recycling of intra-cellular proteins. Proteasomes play a critical role in regulation of cell division in both normal as well as cancer cells. In cancer cells this homeostatic function is deregulated leading to the hyperactivation of the proteasomes. Proteasome inhibitors (PIs) are a class of compounds, which either reversibly or irreversibly block the activity of proteasomes and induce cancer cell death. Interference of PIs with the ubiquitin proteasome pathway (UPP) involved in protein turnover in the cell leads to the accumulation of proteins engaged in cell cycle progression, which ultimately put a halt to cancer cell division and induce apoptosis. Upregulation of many tumor suppressor proteins involved in cell cycle arrest are known to play a role in PI induced cell cycle arrest in a variety of cancer cells. Although many PIs target the proteasomes, not all of them are effective in cancer therapy. Some cancers develop resistance against proteasome inhibition by possibly activating compensatory signaling pathways. However, the details of the activation of these pathways and their contribution to resistance to PI therapy remain obscure. Delineation of these pathways may help in checking resistance against PIs and deducing effective combinational approaches for improved treatment strategies. This review will discuss some of the signaling pathways related to proteasome inhibition and cell division that may help explain the basis of resistance of some cancers to proteasome inhibitors and underline the need for usage of PIs in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Namrata Rastogi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226001, India.
| | | |
Collapse
|
12
|
|
13
|
Wunderlich A, Roth S, Ramaswamy A, Greene BH, Brendel C, Hinterseher U, Bartsch DK, Hoffmann S. Combined inhibition of cellular pathways as a future therapeutic option in fatal anaplastic thyroid cancer. Endocrine 2012; 42:637-46. [PMID: 22477151 DOI: 10.1007/s12020-012-9665-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/22/2012] [Indexed: 12/25/2022]
Abstract
Conventional treatment by surgery, radioiodine, and thyroxin-suppressive therapy often fails to cure anaplastic thyroid cancer (ATC). Therefore several attempts have been made to evaluate new therapy options by use of "small molecule inhibitors". ATC was shown to respond to monotherapeutic proteasome and Aurora kinase inhibition in vitro as well as in xenotransplanted tumor cells. Aim of this study was to evaluate the effect of combined treatment targeting the ubiquitin-proteasome system by bortezomib and Aurora kinases by use of MLN8054. Three ATC cell lines (Hth74, C643, and Kat4.1) were used. The antiproliferative effect of combined treatment with bortezomib and MLN8054 was assessed by MTT-assay and cell cycle analysis (FACS). Proapoptotic effects were evaluated by measurement of Caspase-3 activity, and effects on VEGF secretion were analyzed by ELISA. Compared to mono-application combined treatment with bortezomib and MLN8054 resulted in a further decrease of cell density, whereas antagonizing effects were found regarding cell cycle progression. Caspase-3 activity was increased up to 2.7- and 14-fold by mono-application of MLN8054 and bortezomib, respectively. When the two drugs were used in combination, a further enhancement of Caspase-3 activity was achieved, depending on the cell line. VEGF secretion was decreased following bortezomib treatment and remained unchanged by MLN8054. Only in C643 cells, the bortezomib-induced down-regulation was enhanced when MLN8054 was applied simultaneously. In conclusion, our data demonstrate that targeting the proteasome and Aurora kinases simultaneously results in additional antitumoral effects in vitro, especially regarding cell growth and induction of apoptosis. The efficacy of this therapeutic approach remains to be revised by in vivo and clinical application.
Collapse
Affiliation(s)
- Annette Wunderlich
- Department of Surgery, Philipps-University of Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Van Ness M, Gregg J, Wang J, Chen M. Genetics and molecular pathology of gastric malignancy: Development of targeted therapies in the era of personalized medicine. J Gastrointest Oncol 2012; 3:243-51. [PMID: 22943015 DOI: 10.3978/j.issn.2078-6891.2012.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Gastric malignancy constitutes a major cause of cancer deaths worldwide. Despite recent advances in surgical techniques combined with neoadjuvant chemotherapy and radiotherapy approaches, patients with advanced disease still have poor outcomes. An emerging understanding of the molecular pathways that characterize cell growth, cell cycle, apoptosis, angiogenesis, invasion and metastasis has provided novel targets in gastric cancer therapy. In this review, recent advances in the understanding of molecular tumorigenesis for common gastric malignancies are discussed. We also briefly review the current targeted therapies in the treatment of gastric malignancies. Practical insights are highlighted including HER2 testing and target therapy in gastric adenocarcinoma, morphologic features and molecular signatures of imatinib-resistance GISTs, and recent investigations aimed at tumor-specific therapy for neuroendocrine tumors.
Collapse
|
15
|
Li X, Abdel-Mageed AB, Mondal D, Kandil E. The nuclear factor kappa-B signaling pathway as a therapeutic target against thyroid cancers. Thyroid 2012. [DOI: 10.1089/thy.2012-0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|