1
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
2
|
Long Q, Zhang P, Ou Y, Li W, Yan Q, Yuan X. Single-cell sequencing advances in research on mesenchymal stem/stromal cells. Hum Cell 2024; 37:904-916. [PMID: 38743204 DOI: 10.1007/s13577-024-01076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application. Single-cell sequencing technology emerges as a powerful tool to address these challenges, offering precise dissection of complex cellular samples. It uncovers the genetic structure and gene expression status of individual contained cells on a massive scale and reveals the heterogeneity among these cells. It links the molecular characteristics of MSCs with their clinical applications, contributing to the advancement of regenerative medicine. With the development and cost reduction of single-cell analysis techniques, sequencing technology is now widely applied in fundamental research and clinical trials. This study aimed to review the application of single-cell sequencing in MSC research and assess its prospects.
Collapse
Affiliation(s)
- Qingxi Long
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China.
| |
Collapse
|
3
|
Wang YP, Qin SL, Yang S, Xu YF, Han PF, Liu AH, Hou KD, He JP. Association of IL‑6 and MMP‑3 gene polymorphisms with adolescent idiopathic scoliosis: A systematic review and meta‑analysis. Exp Ther Med 2024; 27:267. [PMID: 38756907 PMCID: PMC11097290 DOI: 10.3892/etm.2024.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
The pathogenesis of adolescent idiopathic scoliosis (AIS) remains unclear. It has been found that interleukin-6 (IL-6) rs1800795 locus and matrix metalloproteinase-3 (MMP-3) rs3025058 locus gene polymorphisms may be associated with AIS susceptibility, which has been controversial and needs to be further confirmed by updated meta-analysis. The aim of the present study was to investigate the association of MMP-3 rs3025058 and IL-6 rs1800795 single nucleotide polymorphisms (SNPs) with susceptibility to AIS. All relevant articles that met the criteria were retrieved and included, and the publication dates were limited from January 2005 to December 2023. The allele frequencies and different genotype frequencies of IL-6 rs1800795 and MMP-3 rs3025058 loci in each study were extracted and statistically analyzed by ReviewManager 5.4 software, and the odds ratio (OR) and 95% confidence interval (95% CI) of different genetic models were calculated. The results of the meta-analysis showed that there was no significant association between the gene polymorphism of IL-6 rs1800795 locus and the pathogenesis of AIS. The allele 5A and genotype 5A5A of MMP-3 rs3025058 SNP were associated with AIS susceptibility (5A vs. 6A, OR=1.18; 95% CI, 1.04-1.33; 5A5A vs. 6A6A, OR=1.65; 95% CI, 1.23-2.21; and 5A5A vs. 5A6A + 6A6A, OR=1.54; 95% CI, 1.19-1.99). Results of subgroup analysis revealed that the allele 5A and genotype 5A5A of MMP-3 rs3025058 SNP were associated with AIS susceptibility in the Caucasian population, and the susceptibility of AIS was associated with the genotype 5A5A of MMP-3 rs3025058 SNP in an Asian population. There was no significant association between the gene polymorphism of IL-6 rs1800795 locus and the pathogenesis of AIS, while the allele 5A of MMP-3 rs3025058 locus was associated with the susceptibility to AIS, especially in the Caucasian population.
Collapse
Affiliation(s)
- Yue-Peng Wang
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| | - Shi-Lei Qin
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Su Yang
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yun-Feng Xu
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Peng-Fei Han
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ai-Hua Liu
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| | - Ke-Dong Hou
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| | - Jian-Ping He
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing 101200, P.R. China
| |
Collapse
|
4
|
Yuan P, Wang ZH, Jiang H, Wang YH, Yang JY, Li LM, Wang WT, Chen J, Li DH, Long SY, Zhang W, He F, Wang WZ. Prevalence and plasma exosome-derive microRNA diagnostic biomarker screening of adolescent idiopathic scoliosis in Yunnan Province, China. Front Pediatr 2024; 12:1308931. [PMID: 38720947 PMCID: PMC11076730 DOI: 10.3389/fped.2024.1308931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Background Idiopathic scoliosis significantly affects the physical and mental health of children and adolescents, with varying prevalence rates in different regions. The occurrence of idiopathic scoliosis is associated with genetic regulation and biochemical factors, but the changes in exosome-derived miRNA profiles among idiopathic scoliosis patients remain unclear. This study aimed to determine the prevalence of idiopathic scoliosis in Yunnan Province, China, and identify key exosome-derived miRNAs in idiopathic scoliosis through a cohort study. Methods From January 2018 to December 2020, a cross-sectional study on idiopathic scoliosis in children and adolescents was conducted in Yunnan Province. A total of 84,460 students from 13 cities and counties in Yunnan Province participated in a scoliosis screening program, with ages ranging from 7 to 19 years. After confirmation through screening and imaging results, patients with severe idiopathic scoliosis and normal control individuals were selected using propensity matching. Subsequently, plasma exosome-derived miRNA sequencing and RT-qPCR validation were performed separately. Based on the validation results, diagnostic performance analysis and target gene prediction were conducted for differential plasma exosome-derived miRNAs. Results The overall prevalence of idiopathic scoliosis in children and adolescents in Yunnan Province was 1.10%, with a prevalence of 0.87% in males and 1.32% in females. The peak prevalence was observed at age 13. Among patients diagnosed with idiopathic scoliosis, approximately 12.8% had severe cases, and there were more cases of double curvature than of single curvature, with thoracolumbar curvature being the most common in the single-curvature group. Sequencing of plasma exosome-derived miRNAs associated with idiopathic scoliosis revealed 56 upregulated and 153 downregulated miRNAs. Further validation analysis confirmed that hsa-miR-27a-5p, hsa-miR-539-5p, and hsa-miR-1246 have potential diagnostic value. Conclusions We gained insights into the epidemiological characteristics of idiopathic scoliosis in Yunnan Province and conducted further analysis of plasma exosome-derived miRNA changes in patients with severe idiopathic scoliosis. This study has provided new insights for the prevention and diagnosis of idiopathic scoliosis, paving the way for exploring clinical biomarkers and molecular regulatory mechanisms. However, further validation and elucidation of the detailed biological mechanisms underlying these findings will be required in the future.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Zhi-Hua Wang
- Trauma Medicine Centre, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Jiang
- Department of Medical Imaging, Kunming Children’s Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yang-Hao Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jian-Yi Yang
- Department of Orthopaedics, Kunming Guandu District People’s Hospital, Kunming, Yunnan, China
| | - Lu-Ming Li
- Department of Orthopedics, Yunnan Sino-German Orthopedic Hospital, Kunming, Yunnan, China
| | - Wen-Tong Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Jing Chen
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Deng-Hui Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Sheng-Yu Long
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- The First Clinical College, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Raimondi L, De Luca A, Gallo A, Perna F, Cuscino N, Cordaro A, Costa V, Bellavia D, Faldini C, Scilabra SD, Giavaresi G, Toscano A. Investigating the Differential Circulating microRNA Expression in Adolescent Females with Severe Idiopathic Scoliosis: A Proof-of-Concept Observational Clinical Study. Int J Mol Sci 2024; 25:570. [PMID: 38203740 PMCID: PMC10779108 DOI: 10.3390/ijms25010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is the most common form of three-dimensional spinal disorder in adolescents between the ages of 10 and 18 years of age, most commonly diagnosed in young women when severe disease occurs. Patients with AIS are characterized by abnormal skeletal growth and reduced bone mineral density. The etiology of AIS is thought to be multifactorial, involving both environmental and genetic factors, but to date, it is still unknown. Therefore, it is crucial to further investigate the molecular pathogenesis of AIS and to identify biomarkers useful for predicting curve progression. In this perspective, the relative abundance of a panel of microRNAs (miRNAs) was analyzed in the plasma of 20 AIS patients and 10 healthy controls (HC). The data revealed a significant group of circulating miRNAs dysregulated in AIS patients compared to HC. Further bioinformatic analyses evidenced a more restricted expression of some miRNAs exclusively in severe AIS females. These include some members of the miR-30 family, which are considered promising regulators for treating bone diseases. We demonstrated circulating extracellular vesicles (EVs) from severe AIS females contained miR-30 family members and decreased the osteogenic differentiation of mesenchymal stem cells. Proteomic analysis of EVs highlighted the expression of proteins associated with orthopedic disease. This study provides preliminary evidence of a miRNAs signature potentially associated with severe female AIS and suggests the corresponding vesicular component may affect cellular mechanisms crucial in AIS, opening the scenario for in-depth studies on prognostic differences related to gender and grade.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Angela De Luca
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Alessia Gallo
- Dipartimento di Ricerca, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Fabrizio Perna
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy (A.T.)
| | - Nicola Cuscino
- Dipartimento di Ricerca, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Aurora Cordaro
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Viviana Costa
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Daniele Bellavia
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Cesare Faldini
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Simone Dario Scilabra
- Fondazione Ri.MED, Dipartimento di Ricerca IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Angelo Toscano
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy (A.T.)
| |
Collapse
|
6
|
Li MJ, Liang ZT, Sun Y, Li J, Zhang HQ, Deng A. Research progress on the regulation of bone marrow stem cells by noncoding RNAs in adolescent idiopathic scoliosis. J Cell Physiol 2023; 238:2228-2242. [PMID: 37682901 DOI: 10.1002/jcp.31119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in young women, but its pathogenesis remains unclear. The primary pathogenic factors contributing to its development include genetics, abnormal bone metabolism, and endocrine factors. Bone marrow stem cells (BMSCs) play a crucial role in the pathogenesis of AIS by regulating its occurrence and progression. Noncoding RNAs (ncRNAs) are also involved in the pathogenesis of AIS, and their role in regulating BMSCs in patients with AIS requires further evaluation. In this review, we discuss the relevant literature regarding the osteogenic, chondrogenic, and lipogenic differentiation of BMSCs. The corresponding mechanisms of ncRNA-mediated BMSC regulation in patients with AIS, recent advancements in AIS and ncRNA research, and the importance of ncRNA translation profiling and multiomics are highlighted.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhuo-Tao Liang
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yang Sun
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jiong Li
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ang Deng
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
8
|
Feng S, Li J, Tian J, Lu S, Zhao Y. Application of Single-Cell and Spatial Omics in Musculoskeletal Disorder Research. Int J Mol Sci 2023; 24:2271. [PMID: 36768592 PMCID: PMC9917071 DOI: 10.3390/ijms24032271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders, including fractures, scoliosis, heterotopic ossification, osteoporosis, osteoarthritis, disc degeneration, and muscular injury, etc., can occur at any stage of human life. Understanding the occurrence and development mechanism of musculoskeletal disorders, as well as the changes in tissues and cells during therapy, might help us find targeted treatment methods. Single-cell techniques provide excellent tools for studying alterations at the cellular level of disorders. However, the application of these techniques in research on musculoskeletal disorders is still limited. This review summarizes the current single-cell and spatial omics used in musculoskeletal disorders. Cell isolation, experimental methods, and feasible experimental designs for single-cell studies of musculoskeletal system diseases have been reviewed based on tissue characteristics. Then, the paper summarizes the latest findings of single-cell studies in musculoskeletal disorders from three aspects: bone and ossification, joint, and muscle and tendon disorders. Recent discoveries about the cell populations involved in these diseases are highlighted. Furthermore, the therapeutic responses of musculoskeletal disorders, especially single-cell changes after the treatments of implants, stem cell therapies, and drugs are described. Finally, the application potential and future development directions of single-cell and spatial omics in research on musculoskeletal diseases are discussed.
Collapse
Affiliation(s)
- Site Feng
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sheng Lu
- The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
9
|
Yu H, Tang D, Wu H, Li C, Lu Y, He F, Zhang X, Yang Y, Shi W, Hu W, Zeng Z, Dai W, Ou M, Dai Y. Integrated single-cell analyses decode the developmental landscape of the human fetal spine. iScience 2022; 25:104679. [PMID: 35832888 PMCID: PMC9272381 DOI: 10.1016/j.isci.2022.104679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The spine has essential roles in supporting body weight, and passaging the neural elements between the body and the brain. In this study, we used integrated single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing analyses to reveal the cellular heterogeneity, lineage, and transcriptional regulatory network of the developing human spine. We found that EPYC + HAPLN1+ fibroblasts with stem cell characteristics could differentiate into chondrocytes by highly expressing the chondrogenic markers SOX9 and MATN4. Neurons could originate from neuroendocrine cells, and MEIS2 may be an essential transcription factor that promotes spinal neural progenitor cells to selectively differentiate into neurons during early gestation. Furthermore, the interaction of NRP2_SEMA3C and CD74_APP between macrophages and neurons may be essential for spinal cord development. Our integrated map provides a blueprint for understanding human spine development in the early and midgestational stages at single-cell resolution and offers a tool for investigating related diseases. scRNA-seq and scATAC-seq analyses reveal the developmental landscape of the fetal spine Chondrocytes may originate from EPYC + HAPLN1+ fibroblasts with stem cell characteristics Neurons may originate from neuroendocrine cells with regulation by MEIS2
Collapse
Affiliation(s)
- Haiyan Yu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Pharmacy, Shenzhen Pingshan District People's Hospital, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Hongwei Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Chunhong Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yongping Lu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Fang He
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Xiaogang Zhang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen 518000, Guangdong, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wenlong Hu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX 78721, USA
| | - Minglin Ou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Lingui District, Guilin 541000, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|