1
|
El Hajam M, Idrissi Kandri N, Özdemir S, Plavan G, Ben Hamadi N, Boufahja F, Zerouale A. Statistical Design and Optimization of Cr (VI) Adsorption onto Native and HNO 3/NaOH Activated Cedar Sawdust Using AAS and a Response Surface Methodology (RSM). Molecules 2023; 28:7271. [PMID: 37959691 PMCID: PMC10649725 DOI: 10.3390/molecules28217271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
The removal of heavy metals from wastewater has become the subject of considerable interest at present. Thus, the use of novel adsorbents that are highly efficient is of critical importance for the removal of Cr (VI) ions from aqueous media. The adsorption of Cr (VI) ions from aqueous solutions by a new adsorbent, cedar wood sawdust, and the optimization of its adsorption parameters, were investigated in this study. Cedar wood sawdust was used in its native and HNO3/NaOH chemically modified forms as new low-cost sorbents to remove Cr (VI) ions from aqueous solutions in a batch system. The adsorption conditions were analyzed via response surface methodology. The RSM results showed that the optimal adsorption conditions yielding the best response were an adsorbent mass of 2 g for native Cedar and 1.125 g for its activated form, a metal concentration of 150 mg/L for native Cedar and 250 mg/L for activated, a temperature of 50 °C, a pH of 1, and a contact time of 67.5 min. At optimum adsorption conditions, the maximum adsorption capacities and the adsorption yields were 23.64 mg/g and 84% for native Cedar and 48.31 mg/g and 99% for activated Cedar, respectively.
Collapse
Affiliation(s)
- Maryam El Hajam
- School of Forest Resources and Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA;
- Processes, Materials and Environment Laboratory (PMEL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, Fez BP 2202, Morocco;
| | - Noureddine Idrissi Kandri
- Signals Systems and Components Laboratory (SSCL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, Fez BP 2202, Morocco;
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey;
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Bvd. Carol I. No. 20A, 700505 Iasi, Romania;
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelaziz Zerouale
- Processes, Materials and Environment Laboratory (PMEL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, Fez BP 2202, Morocco;
| |
Collapse
|
2
|
Najafi M, Bastami TR, Binesh N, Ayati A, Emamverdi S. Sono-sorption versus adsorption for the removal of congo red from aqueous solution using NiFeLDH/Au nanocomposite: Kinetics, thermodynamics, isotherm studies, and optimization of process parameters. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Farajzadeh MA, Nemati M, Altunay N, Tuzen M, Kaya S, Kheradmand F, Afshar Mogaddam MR. Experimental and density functional theory studies during a new solid phase extraction of phenolic compounds from wastewater samples prior to GC–MS determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Carrasco-Correa EJ, Cocovi-Solberg DJ, Herrero-Martínez JM, Simó-Alfonso EF, Miró M. 3D printed fluidic platform with in-situ covalently immobilized polymer monolithic column for automatic solid-phase extraction. Anal Chim Acta 2020; 1111:40-48. [PMID: 32312395 DOI: 10.1016/j.aca.2020.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023]
Abstract
In this work, 3D stereolithographic printing is proposed for the first time for the fabrication of fluidic devices aimed at in-situ covalent immobilization of polymer monolithic columns. Integration in advanced flow injection systems capitalized upon programmable flow was realized for fully automatic solid-phase extraction (SPE) and clean-up procedures as a 'front-end' to on-line liquid chromatography. The as-fabricated 3D-printed extraction column devices were designed to tolerate the pressure drop of forward-flow fluidic systems when handling large sample volumes as demonstrated by the determination of anti-microbial agents, plastic additives and monomers as models of emerging contaminants (4-hydroxybenzoic acid, methylparaben, phenylparaben, bisphenol A and triclosan). Decoration of the monolithic phase with gold nanoparticles (AuNPs) was proven most appropriate for the enrichment of phenolic-type target compounds. In particular, the absolute recoveries for the tested analytes ranged from 73 to 92% both in water and saliva samples. The 3D printed composite monolith showed remarkable analytical features in terms of loading capacity (2 mg g-1), breakthrough volume (10 mL), satisfactory batch-to-batch reproducibility (<9% RSD), and easy on-line coupling of the SPE device to HPLC systems. The fully automatic 3D-printed SPE-HPLC hyphenated system was also exploited for the on-line extraction, matrix clean-up and determination of triclosan in 200 μL of real saliva samples.
Collapse
Affiliation(s)
- Enrique Javier Carrasco-Correa
- University of Valencia, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100, Burjassot Valencia, Spain.
| | - David J Cocovi-Solberg
- FI-TRACE Group, Department of Chemistry, University of Balearic Islands, Carretera de Valldemossa, Km 7.5, E 07122, Palma de Mallorca, Spain; University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - José Manuel Herrero-Martínez
- University of Valencia, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100, Burjassot Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- University of Valencia, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100, Burjassot Valencia, Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of Balearic Islands, Carretera de Valldemossa, Km 7.5, E 07122, Palma de Mallorca, Spain.
| |
Collapse
|
5
|
Yigaimu A, Muhammad T, Yang W, Muhammad I, Wubulikasimu M, Piletsky SA. Magnetic Molecularly Imprinted Polymer Particles Based Micro-Solid Phase Extraction for the Determination of 4-Nitrophenol in Lake Water. Macromol Res 2019. [DOI: 10.1007/s13233-019-7151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Asfaram A, Ghaedi M, Abidi H, Javadian H, Zoladl M, Sadeghfar F. Synthesis of Fe 3O 4@CuS@Ni 2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. ULTRASONICS SONOCHEMISTRY 2018; 44:240-250. [PMID: 29680609 DOI: 10.1016/j.ultsonch.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 05/09/2023]
Abstract
A simple procedure based on ultrasound-assisted (UA) dispersive micro solid phase extraction (D-μ-SPE) was applied for sorption of trace amount Allura Red (AR) in fruit juice and water samples. After loading process by UA-D-μ-SPE, the concentrated AR was eluted and monitored using high-performance liquid chromatography-ultraviolet -visible detector (HPLC-UV). The best operational conditions were obtained as follows: pH = 3.0, 8 mg of the sorbent, sonication time of 4.5 min and 0.16 mL of THF as elution solvent. Under the optimum operational conditions, the present method was acceptable for AR quantification in the range of 1.0-5000 ng mL-1. The repeatability based on RSD with the amount of 1.67-3.18%, low LOD (0.198 ng mL-1) and LOQ (0.659 ng mL-1) were obtained. The UA-D-μ-SPE-HPLC-UV method was successfully applied for trace quantification of AR from water and commercial fruit juice samples supplied from local supermarkets, and acceptable relative recoveries over the range of 97.7-105.4% with RSDs ≤5.50% were obtained.
Collapse
Affiliation(s)
- Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - Mohammad Zoladl
- Social Determinants of Health Research Centre, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fardin Sadeghfar
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
7
|
Luo X, Zheng H, Zhang Z, Wang M, Yang B, Huang L, Wang M. Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection. Microchem J 2018. [DOI: 10.1016/j.microc.2017.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Abidi H, Ghaedi M, Rafiei A, Jelowdar A, Arabi M, Ostovan A, Asfaram A. A molecularly imprinted polymer coupled with high-performance liquid chromatography-UV for the determination of albendazole in plasma and urine samples: CCD-RSM design. NEW J CHEM 2018. [DOI: 10.1039/c8nj02893a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study attempted to develop a fast and sensitive ultrasound-assisted-dispersive-micro-solid phase extraction method for the separation and preconcentration of albendazole from plasma and urine samples.
Collapse
Affiliation(s)
- Hassan Abidi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
| | | | - Abdollah Rafiei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
| | - Ali Jelowdar
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Maryam Arabi
- Chemistry Department, Yasouj University
- Yasouj
- Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences
- Yasuj
- Iran
| |
Collapse
|
9
|
Khezeli T, Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Gan G, Mei R, Qiu L, Hong H, Wang Q, Mazumder A, Wu S, Pan X, Liang Y. Effect of Metal Ions on the Formation of Trichloronitromethane during Chlorination of Catechol and Nitrite. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1933-1940. [PMID: 27898784 DOI: 10.2134/jeq2016.04.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Catechol, nitrite, and dissolved metals are ubiquitous in source drinking water. Catechol and nitrite have been identified as precursors for halonitromethanes (HNMs), but the effect of metal ions on HNM formation during chlorination remains unclear. The main objective of this study was to investigate the effect of metal ions (Fe, Ti, Al) on the formation of trichloronitromethane (TCNM) (the most representative HNM species in disinfected water) on chlorinating catechol and nitrite. Trichloronitromethane was extracted by methyl tert-butyl ether and detected by gas chromatography. The results show that metal ions promoted the formation of TCNM and that the enhancement efficiency followed the order of Fe > Ti > Al. Trichloronitromethane formation increased greatly within 2 h, and a basic condition (pH 8-9) favored TCNM formation more than acidic or neutral conditions. The conjoint effect of the metal-ion mixtures was shown to be similar to that of the single metal ion having the highest promoting effect on TCNM formation. Our results strongly suggest that metal ions play a significant role in enhancing TCNM formation.
Collapse
|