1
|
Nazim T, Kubiak A, Cegłowski M. Quantification of 2,4-dichlorophenoxyacetic acid in environmental samples using imprinted polyethyleneimine with enhanced selectivity as a selective adsorbent in ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133661. [PMID: 38341890 DOI: 10.1016/j.jhazmat.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Detection and quantification of various organic chemicals in the environment is critical to track their fate and control their levels. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely applied phenoxy herbicide with potential toxicity to fish and other aquatic organisms. In this study, we address the need for improved detection of 2,4-D by introducing a novel analytical method for its quantification. This method relies on the selective extraction of 2,4-D using MIPs and their subsequent direct analysis using ambient plasma mass spectrometry. During the synthesis, MIPs with various degrees of glycidol (GLY) functionalization were obtained. Experimental data showed that MIPs with no GLY functionalization displayed the highest adsorption capacity. Conversely, MIPs with 30% GLY functionalization exhibited the greatest selectivity for 2,4-D, rendering them valuable for extraction of 2,4-D even in the presence of other contaminants. Finally, the obtained MIPs were applied for quantification of 2,4-D in various water samples through direct analysis using a specially designed ambient plasma mass spectrometry setup. This approach improved the detection limits by 200-fold compared to pure solution analysis. The quantification of 2,4-D in river water samples yielded highly satisfactory recoveries, demonstrating the effective utility of the proposed analytical setup for real-life water sample analysis.
Collapse
Affiliation(s)
- Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Chen J, Tan L, Cui Z, Qu K, Wang J. Graphene Oxide Molecularly Imprinted Polymers as Novel Adsorbents for Solid-Phase Microextraction for Selective Determination of Norfloxacin in the Marine Environment. Polymers (Basel) 2022; 14:polym14091839. [PMID: 35567008 PMCID: PMC9101591 DOI: 10.3390/polym14091839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a novel sample pretreatment strategy of solid-phase microextraction using graphene oxide molecularly imprinted polymers as adsorbents coupled with high-performance liquid chromatography was developed to detect norfloxacin in the marine environment. As a carrier, the imprinted polymers were synthesized by precipitation polymerization with graphene oxide. Compared with graphene oxide non-imprinted polymers, the graphene oxide molecularly imprinted polymers exhibited higher adsorption capacity towards norfloxacin. The synthesized polymeric materials were packed into a molecularly imprinted solid-phase microextraction cartridge, and critical parameters affecting the extraction process were optimized. Under the optimized molecular imprinted solid-phase microextraction condition, the proposed method was applied to the analysis of norfloxacin for seawater and fish with satisfactory recovery (90.1–102.7%) and low relative standard deviation (2.06–5.29%, n = 3). The limit of detection was 0.15 μg L−1 and 0.10 μg kg−1 for seawater and fish, respectively. The study revealed that the proposed molecularly imprinted solid-phase microextraction represents an attractive sample pretreatment strategy for the analysis of norfloxacin in the marine environment.
Collapse
Affiliation(s)
- Jianlei Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Zhengguo Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
- Correspondence: (Z.C.); (J.W.); Tel.: +86-532-85836341 (Z.C.); +86-532-66782506 (J.W.)
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
- Correspondence: (Z.C.); (J.W.); Tel.: +86-532-85836341 (Z.C.); +86-532-66782506 (J.W.)
| |
Collapse
|
3
|
Hu T, Chen R, Wang Q, He C, Liu S. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. J Sep Sci 2021; 44:274-309. [PMID: 33236831 DOI: 10.1002/jssc.202000832] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Sample pretreatment is essential for the analysis of complicated real samples due to their complex matrices and low analyte concentrations. Among all sample pretreatment methods, solid-phase extraction is arguably the most frequently used one. However, the majority of available solid-phase extraction adsorbents suffer from limited selectivity. Molecularly imprinted polymers are a type of tailor-made artificial antibodies and receptors with specific recognition sites for target molecules. Using molecularly imprinted polymers instead of conventional adsorbents can greatly improve the selectivity of solid-phase extraction, and therefore molecularly imprinted polymer-based solid-phase extraction has been widely applied to separation, clean up and/or preconcentration of target analytes in various kinds of real samples. In this article, after a brief introduction, the recent developments and applications of molecularly imprinted polymer-based solid-phase extraction for determination of different analytes in complicated real samples during the 2015-2020 are reviewed systematically, including the solid-phase extraction modes, molecularly imprinted adsorbent types and their preparations, and the practical applications of solid-phase extraction to various real samples (environmental, food, biological, and pharmaceutical samples). Finally, the challenges and opportunities of using molecularly imprinted polymer-based solid-phase extraction for real sample analysis are discussed.
Collapse
Affiliation(s)
- Tianliang Hu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Run Chen
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Qiang Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Chiyang He
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
4
|
Shirani M, Kamboh MA, Akbari-Adergani B, Akbari A, Sadia Arain S, Rashidi Nodeh H. Sonodecoration of magnetic phosphonated-functionalized sporopollenin as a novel green nanocomposite for stir bar sorptive dispersive microextraction of melamine in milk and milk-based food products. Food Chem 2020; 341:128460. [PMID: 33162256 DOI: 10.1016/j.foodchem.2020.128460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023]
Abstract
The novel green magnetic phosphonated-functionalized sporopollenin nanocomposite (MPSP-nanocomposite) was synthetized and used for stir bar sorptive dispersive microextraction (SBSDME) of melamine in milk and milk-based food products. TEM, SEM-EDX, FT-IR, VSM techniques were applied for characterization of MPSP-nanocomposite. The influential parameters including pH, extraction time, stirring rate, elution solvent type and volume, sample volume, desorption time, and ionic strength were studied and at optimum conditions, the linear range of 1-500 (µg L-1), the LOD (S/N = 3) of 0.30 (µg L-1), and the LOQ (S/N = 10) of 0.95 (µg L-1) were achieved. The intra-day precision values (RSD (%), n = 7) of 3.5% for the melamine concentration of 25 (µg L-1). The relative recoveries of 95.8% to 99.6% were acquired for the real samples which confirmed that the proposed method could be successfully utilized in complex matrixes with high matrix effects.
Collapse
Affiliation(s)
- Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| | - Muhammad Afzal Kamboh
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education Tehran Islamic Republic of Iran, Iran.
| | - Ali Akbari
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| | - Sadaf Sadia Arain
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Hamid Rashidi Nodeh
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute, Karaj, Iran
| |
Collapse
|
5
|
Arfaoui F, Khlifi A, Bargaoui M, Khalfaoui M, Kalfat R. Thin Melamine Imprinted Sol Gel Coating on Silica Beads: Experimental and Statistical Physics Study. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0015-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Bates F, Busato M, Piletska E, Whitcombe MJ, Karim K, Guerreiro A, del Valle M, Giorgetti A, Piletsky S. Computational design of molecularly imprinted polymer for direct detection of melamine in milk. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1287197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ferdia Bates
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mirko Busato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Piletska
- Chemical Biology, Department of Chemistry, University of Leicester, Leicester, UK
| | - Michael J. Whitcombe
- Chemical Biology, Department of Chemistry, University of Leicester, Leicester, UK
| | - Kal Karim
- Chemical Biology, Department of Chemistry, University of Leicester, Leicester, UK
| | - Antonio Guerreiro
- Chemical Biology, Department of Chemistry, University of Leicester, Leicester, UK
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Sergey Piletsky
- Chemical Biology, Department of Chemistry, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
Wang T, Ma J, Chen Y, Li Y, Zhang L, Zhang Y. Analysis of melamine and analogs in complex matrices: Advances and trends. J Sep Sci 2016; 40:170-182. [DOI: 10.1002/jssc.201600854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Tingting Wang
- School of Materials and Chemical Engineering/School of safety engineering; Ningbo University of Technology; Ningbo China
| | - Junfeng Ma
- Department of Biological Chemistry; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Yihui Chen
- Xiangshan Entry-Exit Inspection and Quarantine Bureau; Xiangshan China
| | - Ying Li
- School of Materials and Chemical Engineering/School of safety engineering; Ningbo University of Technology; Ningbo China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
8
|
Lian Z, Wang J. Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection. MARINE POLLUTION BULLETIN 2016; 111:411-417. [PMID: 27474342 DOI: 10.1016/j.marpolbul.2016.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
A high selective pre-treatment method for the cleanup and preconcentration of ciprofloxacin in natural seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The ciprofloxacin imprinted polymers were synthesized and the characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted materials showed high adsorption ability for ciprofloxacin and were applied as special solid-phase extraction sorbents for selective separation of ciprofloxacin. An off-line MISPE procedure was optimized and the developed MISPE method allowed direct purification and enrichment of the ciprofloxacin from the aqueous samples prior to high-performance liquid chromatography analysis. The recoveries of spiked seawater on the MISPE cartridges ranged from 75.2 to 112.4% and the relative standard deviations were less than 4.46%. Five seawater samples from Jiaozhou Bay were analyzed and ciprofloxacin was detected in two samples with the concentrations of 0.24 and 0.38μgL(-1), respectively.
Collapse
Affiliation(s)
- Ziru Lian
- Marine College, Shandong University, Weihai 264209, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100,China.
| |
Collapse
|
9
|
Zhao X, Chen L. Analysis of melamine in milk powder by using a magnetic molecularly imprinted polymer based on carbon nanotubes with ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci 2016; 39:3775-3781. [DOI: 10.1002/jssc.201600625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyu Zhao
- Department of Chemistry, College of Science; Northeast Forestry University; China
| | - Ligang Chen
- Department of Chemistry, College of Science; Northeast Forestry University; China
| |
Collapse
|
10
|
Gao D, Yang F, Xia Z, Zhang Q. Molecularly imprinted polymer for the selective extraction of luteolin fromChrysanthemum morifoliumRamat. J Sep Sci 2016; 39:3002-10. [DOI: 10.1002/jssc.201600520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Die Gao
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| | - Fengqing Yang
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| | - Zhining Xia
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| | - Qihui Zhang
- School of Chemistry & Chemical Engineering; Chongqing University; Chongqing China
| |
Collapse
|
11
|
He X, Tan L, Wu W, Wang J. Determination of sulfadiazine in eggs using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. J Sep Sci 2016; 39:2204-12. [DOI: 10.1002/jssc.201600233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xiuping He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; Ocean University of China; Qingdao P. R. China
| | - Liju Tan
- College of Chemistry and Chemical Engineering; Ocean University of China; Qingdao P. R. China
| | - Wei Wu
- College of Chemistry and Chemical Engineering; Ocean University of China; Qingdao P. R. China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; Ocean University of China; Qingdao P. R. China
- College of Chemistry and Chemical Engineering; Ocean University of China; Qingdao P. R. China
| |
Collapse
|
12
|
Greibrokk T. Molecular Imprinting in Separation Science. J Sep Sci 2016; 39:815-7. [DOI: 10.1002/jssc.201670054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tyge Greibrokk
- Department of Chemistry; University of Oslo; Oslo Norway
| |
Collapse
|