1
|
Suárez-Oubiña C, Álvarez-Freire I, Cabarcos P, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Isolation and quantification of synthetic cannabinoid receptor agonists in human urine using membrane-assisted solvent extraction followed by liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:333-342. [PMID: 36594640 DOI: 10.1039/d2ay01491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The global market for new psychoactive substances (NPSs) continues to expand, and the range of drugs available on the market has probably never been wider. Synthetic cannabinoids (SCRAs) constitute the largest family of NPSs, and they go unnoticed during illicit drug market control and during routine toxicological-forensic analysis. Membrane-assisted solvent extraction (MASE) has been a novelty proposed for the simultaneous extraction of SCRAs, and urine has been selected as a model forensic-clinical sample. Isolated SCRAs were further determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). An optimised sample pre-treatment procedure consists of using 400 μL of n-hexane as an extraction phase placed inside a polypropylene (PP) membrane, adjusting the donor phase (urine) at a pH value of 5.9. Extraction was assisted by mechanical (orbital-horizontal) stirring in a temperature-controlled chamber at room temperature for 20 min. n-Hexane extracts were evaporated to dryness and re-suspended in 100 μL of mobile phase, which leads to a pre-concentration factor of 50. Method validation showed analytical recoveries higher than 80% for most SCRAs and repeatability (inter-day and intra-day assays) with RSD values lower than 20%. The proposed method was found to be selective and sensitive and limits of quantification (LOQs) between 0.10 and 1.0 μg L-1 were achieved.
Collapse
Affiliation(s)
- Cristian Suárez-Oubiña
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain.
| | - Iván Álvarez-Freire
- Forensic Sciences Institute "Luís Concheiro" (INCIFOR), Department of Pathologic Anatomy and Forensic Sciences, Faculty of Medicine, Universidade de Santiago de Compostela, Rúa de San Francisco, s/n, 15782 Santiago de Compostela, Spain
| | - Pamela Cabarcos
- Forensic Sciences Institute "Luís Concheiro" (INCIFOR), Department of Pathologic Anatomy and Forensic Sciences, Faculty of Medicine, Universidade de Santiago de Compostela, Rúa de San Francisco, s/n, 15782 Santiago de Compostela, Spain
| | - Ana María Bermejo
- Forensic Sciences Institute "Luís Concheiro" (INCIFOR), Department of Pathologic Anatomy and Forensic Sciences, Faculty of Medicine, Universidade de Santiago de Compostela, Rúa de San Francisco, s/n, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain.
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Li YS, Tseng WL, Lu CY. Determination of formaldehyde in the daily living environment using membrane-enhanced water plug coupled extraction following peptide-based greener reaction derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Hoseininezhad-Namin MS, Ozkan SA, Rahimpour E, Jouyban A. Development of a β-cyclodextrin-modified gold nanoparticle-assisted electromembrane extraction method followed by capillary electrophoresis for methadone determination in plasma. RSC Adv 2022; 12:33936-33944. [PMID: 36505701 PMCID: PMC9702798 DOI: 10.1039/d2ra06419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, gold nanoparticles (AuNPs) modified with β-cyclodextrin (β-CD) were used to assist with electromembrane extraction (EME) and were coupled with capillary electrophoresis (CE) and ultraviolet (UV) detection (CE-UV) for the extraction and measurement of methadone from plasma samples. A β-CD-modified AuNP-reinforced hollow fiber (HF) was utilized in this work. The β-CD-modified AuNPs act as an absorbent and provide an extra pathway for the analyte extraction. For obtaining the effect of the presence of β-CD-modified AuNPs in the HF pores, the extraction efficiency of the EME and β-CD-modified AuNPs/EME techniques were compared. Different parameters influencing the extraction efficacy of the EME and β-CD-modified AuNPs/EME methods were optimized. Optimal extractions were performed with 1-octanol as the organic solvent in the supported liquid membrane (SLM), with an applied voltage of 10 V as the driving force across the SLM, and with pH 7.0 in the donor solutions with a stirring speed of 1000 rpm after 20 min and 25 min for the β-CD-modified AuNPs/EME and EME methods, respectively. Under optimal conditions, compared with the EME method, the β-CD-modified AuNPs/EME method exhibited increased extraction efficacy in a short time. The β-CD-modified AuNPs/EME technique demonstrated a lower limit of detection (5.0 ng mL-1), higher extraction recovery (68%), and a more optimal preconcentration factor (135). Furthermore, this method was successfully utilized for measuring methadone in real plasma samples.
Collapse
Affiliation(s)
- Mir Saleh Hoseininezhad-Namin
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical SciencesTabrizIran,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical SciencesTabrizIran
| | - Sibel Aysil Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical ChemistryAnkaraTurkey
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical SciencesTabrizIran,Infectious and Tropical Diseases Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical SciencesTabrizIran,Faculty of Pharmacy, Near East UniversityP.O. Box 99138 Nicosia, North CyprusMersin 10Turkey
| |
Collapse
|
4
|
Bombana HS, Dos Santos MF, Muñoz DR, Leyton V. Hollow-fibre liquid-phase microextraction and gas chromatography-mass spectrometric determination of amphetamines in whole blood. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1139:121973. [PMID: 31962207 DOI: 10.1016/j.jchromb.2020.121973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/02/2023]
Abstract
Here, we present a fully validated method using a hollow-fibre liquid-phase microextraction technique for the determination by gas chromatography-mass spectrometry (GC-MS) of amphetamine (AMP), methamphetamine (MET), fenproporex (FEN), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxyethylamphetamine (MDEA) in whole blood. The validation parameters presented successful values within those recommended by the Scientific Working Group for Forensic Toxicology (SWGTox) in the Standard Practices for Method Validation in Forensic Toxicology. The limits of detection ranged from 1 to 3 ng/mL, and the limits of quantification ranged from 2 to 5 ng/mL. The determination coefficients (r2) ranged from 0.990 to 0.997, and the method presented good intraday and interday accuracy (from 90.4% to 97.2%) and satisfactory recovery (from 68% to 110%). No carryover was observed. The heteroscedasticity was tested, and only AMP presented homoscedasticity. Weighting factors were applied to correct the linearity of MET (1/x2), MDA (1/x), FEN (1/x1/2), MDMA (1/x2) and MDEA (1/y). Dilution integrity was tested at ratios of 1:2, 1:5 and 1:10, and all maintained intraday precision (from 94.9% to 99.3%) and interday precision (from 89.4% to 94.9%). The validated method was applied to six real whole blood samples from individuals suspected of consuming ecstasy, and MDMA, MDA and amphetamine were successfully identified and quantified.
Collapse
Affiliation(s)
- Henrique Silva Bombana
- Faculty of Medicine, University of Sao Paulo, Av. Dr. Arnaldo, 455 Cerqueira Cesar, Sao Paulo 01246-903, Brazil.
| | - Marcelo Filonzi Dos Santos
- Faculty of Medicine, University of Sao Paulo, Av. Dr. Arnaldo, 455 Cerqueira Cesar, Sao Paulo 01246-903, Brazil
| | - Daniel Romero Muñoz
- Faculty of Medicine, University of Sao Paulo, Av. Dr. Arnaldo, 455 Cerqueira Cesar, Sao Paulo 01246-903, Brazil
| | - Vilma Leyton
- Faculty of Medicine, University of Sao Paulo, Av. Dr. Arnaldo, 455 Cerqueira Cesar, Sao Paulo 01246-903, Brazil
| |
Collapse
|