1
|
Guo X, Yang D, Chen Y, Ding J, Ding L, Song D. Highly sensitive ratiometric fluorescence detection of dibutyl phthalate in liquor and water using bio-based fluorescent molecularly imprinted polymers. Talanta 2025; 285:127329. [PMID: 39657521 DOI: 10.1016/j.talanta.2024.127329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
A novel fluorescent molecularly imprinted polymer (DBP-FMIPs) was designed and prepared for the selective detection of dibutyl phthalate (DBP) in food samples. This was achieved using inclusion complexes formed between short amylose and DBP as precursors, with tetrafluoroterephthalonitrile, which possesses an electron-donor-acceptor type dipolar structure within a compact benzene backbone, serving as a crosslinking agent and fluorescent readout signal. DBP-FMIPs exhibit excellent fluorescence stability and high selectivity, with a response time of less than 3 min for DBP. Based on the blue-green fluorescence emitted by DBP-FMIPs (λem = 500 nm), this material provided the response signal, while the red-emitting carbon dots(R-CDs, λem = 680 nm) were used as an internal reference, constructing a ratiometric fluorescence probe (R-CDs/DBP-FMIPs). The fluorescence intensity ratio (I500/I680)0/(I500/I680) exhibited a linear response to DBP within a concentration range of 0.020-20 mg L-1, with a detection limit as low as 4.5 μg L-1, and its fluorescence color shifted from blue to red. The fluorescent probe was successfully applied for detecting DBP in liquor and drinking water samples, achieving recoveries of 88-107 % and a relative standard deviation of 1.1-6.4 %. This preparation method can also be adapted for synthesizing FMIPs targeting other hydrophobic compounds. Additionally, the developed ratiometric fluorescence probe shows great potential for the selective and visual detection of phthalates in complex samples.
Collapse
Affiliation(s)
- Xu Guo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Dandan Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| |
Collapse
|
2
|
Dhaffouli A, Holzinger M, Carinelli S, Barhoumi H, Salazar-Carballo PA. ZnO Doped Silica Nanoparticles (ZnO@SiO 2) for Enhanced Electrochemical Detection of Cd 2+ Ions in Real Samples. SENSORS (BASEL, SWITZERLAND) 2024; 24:4179. [PMID: 39000958 PMCID: PMC11244355 DOI: 10.3390/s24134179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Pollution by heavy metal ions has a serious impact on human health and the environment, which is why the monitoring of heavy metal ions is of great practical importance. In this work, we describe the development of an electrochemical sensor for the detection of cadmium (Cd2+) involving the doping of porous SiO2 spheres with ZnO nanoparticles. Zinc oxide is chosen as the central dopant in the composite material to increase the conductivity and thus improve the electrochemical detection of Cd2+ ions with the SiO2 spheres. The resulting composite is characterized by electrochemical spectroscopic XRD and microscopic methods. As a result, the developed sensor shows good selectivity towards the targeted Cd2+ ions compared to other divalent ions. After optimization of the experimental conditions, the electrochemical sensor shows two different linear ranges between 2.5 × 10-11 molL-1 to 1.75 × 10-10 molL-1 and 2 × 10-9 molL-1 to 1.75 × 10-9 molL-1, indicating a change from diffusion-controlled to surface-controlled oxidation of Cd2+. A detection limit was reached at 4.4 × 10-11 molL-1. In addition, it offers good repeatability and recovery, and can detect accurate trace amounts of Cd2+ ions in real samples such as tap water or seawater by spiking these samples with known Cd2+ concentrations. This setup also provides satisfactory recovery rates in the range of 89-102%.
Collapse
Affiliation(s)
- Afef Dhaffouli
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
- Department of Chemistry, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2100, Tunisia
| | - Michael Holzinger
- Department of Molecular Chemistry UMR CNRS 5250, Grenoble-Alpes University, CEDEX 9, 38058 Grenoble, France
| | - Soledad Carinelli
- Laboratory of Sensors, Biosensors and Advanced Materials, Faculty of Health Sciences, University of La Laguna, Campus de Ofra s/n, 38071 La Laguna, Spain
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Pedro A Salazar-Carballo
- Laboratory of Sensors, Biosensors and Advanced Materials, Faculty of Health Sciences, University of La Laguna, Campus de Ofra s/n, 38071 La Laguna, Spain
| |
Collapse
|
3
|
Shen J, Jiang P, Chen T, Ding H, Huang W, Yang W. Selective enrichment and extraction of trace dibutyl phthalate by photo‐controlled molecularly imprinting polymers based on
SiO
2
nanoparticles. J Appl Polym Sci 2023. [DOI: 10.1002/app.53613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junliang Shen
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang China
| | - Pengfei Jiang
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang China
| | - Ting Chen
- Yangzhou Food and Drug Inspection and Testing Center Yangzhou China
| | - Hua Ding
- Zhenjiang First People's Hospital Zhenjiang China
| | - Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang China
| | - Wenming Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang China
| |
Collapse
|
4
|
|
5
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Huang W, Si H, Zhang L, Yin X, Ji Z, Ni X, Xu W. Photoresponsive molecularly imprinted polymers based on 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid for the determination of sulfamethazine. J Sep Sci 2021; 44:2536-2544. [PMID: 33929080 DOI: 10.1002/jssc.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Core-shell structured photoresponsive molecularly imprinted polymers were developed for the determination of sulfamethazine in milk samples. The photoresponsive imprinted polymers were prepared with polymethyl methacrylate containing a mass of ester groups as core, sulfamethazine as template molecules, self-synthesized water-soluble 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid as a photoresponsive monomer, and ethylene dimethacrylate as cross-linker. Interestingly, the imprinted polymer can specifically adsorb sulfamethazine under dark and 440 nm irradiation, and release it at 365 nm. A series of adsorption experiments showed that the maximum adsorption capacity reached 12.5 mg⋅g-1 , and the adsorption equilibrium was achieved within 80 min. Moreover, the imprinted polymers display excellent reusability, with almost no performance loss after four times photo-controlled adsorption-release cycles, and the imprinted polymers have excellent selectively for sulfamethazine (imprinting factor = 3.01). In the end, the imprinted polymers realized effective separation and enrichment of sulfamethazine in milk, with a recovery rate of over 97.5%. The material can be used as a solid-phase extractant in the process of enrichment and separation for the quantitative detection of sulfamethazine in milk samples.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Haojie Si
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Liming Zhang
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Xifeng Yin
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Zehua Ji
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoni Ni
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, P. R. China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
7
|
Huang W, Liu Y, Wang N, Song G, Yin X, Zhang L, Ni X, Xu W. A Sensitive Electrochemical Sensor Based on Ion Imprinted Polymers with Gold Nanoparticles for High Selective Detecting Cd (II) Ions in Real Samples. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01892-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
A Magnetic, Core–Shell Structured, pH-Responsive Molecularly Imprinted Polymers for the Selective Detection of Sulfamethoxazole. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01893-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|