1
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
2
|
Du K, Yang M, Ma W, Liu T, Sun H, Huang T, Li J, Chang Y. Advanced Bionic Technology Combining Online Electrochemistry-Mass Spectrometry and Offline Electrochemistry-Liquid Chromatography-Mass Spectrometry for Simulating and Characterizing Metabolic Processes of Bioactive phenolic acids in Natural Products. J Sep Sci 2024; 47:e70006. [PMID: 39520080 DOI: 10.1002/jssc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
The metabolism research of bioactive phenolic acids widely found in natural products is of great significance for elucidating pharmacologic mechanisms and screening lead compounds. However, it is time-consuming and vulnerable to interference to conduct the traditional metabolism approach by applying organisms or biomaterials. Herein, a bionic technology was established by combining online electrochemistry-mass spectrometry (EC-MS) with offline electrochemistry-liquid chromatography-mass spectrometry (EC-LC-MS) to investigate the oxidative transformation and metabolic processes of the active phenolic acids (including salvianolic acid A, caffeic acid, 3, 5-O-dicaffeoylquinic acid, ferulic acid, salvianic acid A, and protocatechuic acid). Phase I metabolism of the phenolic acids were simulated by applying a three-electrode controlled potential electrochemical reactor with a boron-doped diamond electrode, with glutathione mixed into the oxidative products simultaneously for obtaining the phase II metabolites. Finally, structural characterization of the simulated metabolites of the phenolic acids was achieved successfully, including hydroxylation, methylation, demethylation, decarboxylation, etc. It was revealed that the simulated metabolism process based on an electrochemical system was effective in yielding a wide variety of metabolites for these compounds, which was also compared with the metabolism results applying rat liver microsomes. Consequently, this bionic technology is expected to be a powerful tool to investigate the material basis for the efficacy of active ingredients of natural products.
Collapse
Affiliation(s)
- Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentao Ma
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianyu Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huihui Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tengteng Huang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Wang Y, Gong Y, Xiao Y, Jiang Y, Chen J, Zhao H, Qi M, Chen H, Fan J, Wang J. Study on the dynamic metabolic characteristic of main active ingredients in Danggui Buxue Decoction by liquid chromatography-tandem mass spectrometry based on in situ sequential metabolism strategy. J Sep Sci 2023; 46:e2200941. [PMID: 37322407 DOI: 10.1002/jssc.202200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Danggui Buxue Decoction is a classic formula for replenishing qi and nourishing blood. Despite its widespread use, its dynamic metabolism involved remains unclear. Based on the sequential metabolism strategy, blood samples from different metabolic sites were obtained via in situ closed intestine ring integrated with a jugular venous continuous blood supply technique. An ultra-high-performance liquid chromatography-linear triple quadruple-Orbitrap-tandem mass spectrometry method was developed for the identification of prototypes and metabolites in rat plasma. The dynamic absorption and metabolic landscape of flavonoids, saponins, and phthalides were characterized. Flavonoids could be deglycosylated, deacetylated, demethylated, dehydroxylated, and glucuronicated in the gut and then absorbed for further metabolism. Jejunum is an important metabolic site for saponins biotransformation. Saponins that are substituted by Acetyl groups tend to lose their acetyl groups and convert to Astragaloside IV in the jejunum. Phthalides could be hydroxylated and glucuronidated in the gut and then absorbed for further metabolism. Seven components serve as crucial joints in the metabolic network and are potential candidates for the quality control of Danggui Buxue Decoction. The sequential metabolism strategy described in this study could be useful for characterizing the metabolic pathways of Chinese medicine and natural products in the digestive system.
Collapse
Affiliation(s)
- Yanmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yuan Gong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yao Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yani Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jianbo Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Hedi Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Miao Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Han Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jing Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jingjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
4
|
Huang Y, Wu Y, Yin H, Du L, Chen C. Senkyunolide I: A Review of Its Phytochemistry, Pharmacology, Pharmacokinetics, and Drug-Likeness. Molecules 2023; 28:molecules28083636. [PMID: 37110869 PMCID: PMC10144034 DOI: 10.3390/molecules28083636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Senkyunolide I (SI) is a natural phthalide that has drawn increasing interest for its potential as a cardio-cerebral vascular drug candidate. In this paper, the botanical sources, phytochemical characteristics, chemical and biological transformations, pharmacological and pharmacokinetic properties, and drug-likeness of SI are reviewed through a comprehensive literature survey, in order to provide support for its further research and applications. In general, SI is mainly distributed in Umbelliferae plants, and it is relatively stable to heat, acid, and oxygen, with good blood-brain barrier (BBB) permeability. Substantial studies have established reliable methods for the isolation, purification, and content determination of SI. Its pharmacological effects include analgesic, anti-inflammatory, antioxidant, anti-thrombotic, anti-tumor effects, alleviating ischemia-reperfusion injury, etc. Pharmacokinetic parameters indicate that its metabolic pathway is mainly phase Ⅱ metabolism, and it is rapidly absorbed in vivo and widely distributed in the kidneys, liver, and lungs.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Hongxiang Yin
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leilei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|
5
|
Lu YJ, Niu L, Shen FK, Yang W, Xie Y, Li SY, Jiang M, Bai G. Ligustilide attenuates airway remodeling in COPD mice by covalently binding to MH2 domain of Smad3 in pulmonary epithelium, disrupting the Smad3-SARA interaction. Phytother Res 2023; 37:717-730. [PMID: 36216328 DOI: 10.1002/ptr.7655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
Airway remodeling is one of the hallmarks of chronic obstructive pulmonary disease (COPD) and is closely related to the dysregulation of epithelial-mesenchymal transition (EMT). Smad3, an important transcriptional regulator responsible for transducing TGF-β1 signals, is a promising target for EMT modulation. We found that ligustilide (Lig), a novel Smad3 covalent inhibitor, effectively inhibited airway remodeling in cigarette smoke (CS) combined with lipopolysaccharide (LPS)-induced COPD mice. Oral administration of an alkynyl-modified Lig probe was used to capture and trace target proteins in mouse lung tissue, revealing Smad3 in airway epithelium as a key target of Lig. Protein mass spectrometry and Smad3 mutation analysis via in-gel imaging indicated that the epoxidized metabolite of Lig covalently binds to the MH2 domain of Smad3 at Cys331/337. This irreversible bonding destroys the interaction of Smad3-SARA, prevents Smad3 phosphorylation activation, and subsequently suppresses the nuclear transfer of p-Smad3, the EMT process, and collagen deposition in TGF-β1-stimulated BEAS-2B cells and COPD mice. These findings provide experimental support that Lig attenuates COPD by repressing airway remodeling which is attributed to its suppression on the activation of EMT process in the airway epithelium via targeting Smad3 and inhibiting the recruitment of the Smad3-SARA heterodimer in the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Yu-Jie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Lin Niu
- Laboratory of Compound Drugs and Systems Biology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Fu-Kui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yang Xie
- Department of Respiratory Diseases, The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Su-Yun Li
- Department of Respiratory Diseases, The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Yan Y, Chen F, Zou H, Zhang P, Wu X, Lin M. A high-resolution mass spectrometric method for identification and characterization of the in vitro metabolites of senkyunolide H. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9362. [PMID: 35881078 DOI: 10.1002/rcm.9362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Ligusticum chuanxiong Hort is a well-known herb medicine that has been widely prescribed to treat cardiovascular diseases in China for hundreds of years. Senkyunolide H (SNH) is one of the major bioactive ingredients extracted from L. chuanxiong, and it displayed neuroprotective effects. To fully understand its mechanism of action, the metabolism needs to be investigated. METHODS In vitro studies were conducted by incubating SNH with rat and human hepatocytes, and the metabolites were identified and characterized using liquid chromatography in combination with hybrid quadrupole Orbitrap mass spectrometry (LC-Orbitrap-MS). The structures of the metabolites were proposed by accurate mass analysis of respective precursor ions, indicative product ions, and elemental compositions. RESULTS Under the current conditions, a total of 10 metabolites were identified, and among these metabolites, M3 and M4 were the most abundant metabolites both in rat and human hepatocytes. Our results demonstrated that hydroxylation, hydration, glucuronidation, and GSH conjugation were the primary metabolic pathways of SNH. CONCLUSIONS The present study provides new information on the metabolism of SNH, which would help prospects of the disposition of SNH.
Collapse
Affiliation(s)
- Yuqi Yan
- Department of Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengping Chen
- Department of Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haizhu Zou
- Department of Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaohua Wu
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengying Lin
- Department of Physical Examination Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Cheng C, Zhao S, Gu YL, Pang J, Zhao Y. Characterization and identification of the metabolites of dihydromethysticin by ultra-high-performance liquid chromatography orbitrap high-resolution mass spectrometry. J Sep Sci 2022; 45:2914-2923. [PMID: 35689602 DOI: 10.1002/jssc.202200250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Dihydromethysticin, a natural component from Piper methysticum Forst, has been reported to display pharmacological effects in mental disorders and some malignant tumors. However, the metabolism of this component remained unknown. The goal of this work was conducted to discover the metabolic profiles of dihydromethysticin. The in vitro incubation was performed by incubating dihydromethysticin with rat, monkey, and human liver microsomes and hepatocytes. An analytical assay of ultra-high performance liquid chromatography combined with Orbitrap high-resolution mass spectrometry was utilized to detect and identify the metabolites. With high resolution mass spectrometric determination, the accurate mass, elemental composition, and product ions of the metabolites were determined, which enabled structural characterization to become easy. Under the present conditions, four phase-I metabolites, as well as six phase-II metabolites, were detected and their tentative structures were characterized by mass spectra. M4 was found as the most abundant metabolite both in liver microsomes and hepatocytes. Cytochrome P450 1A2, 2C9, and 3A4 contributed to the formation of this metabolite by using human recombinant P450 enzymes. M4 can be oxidized into reactive ortho-quinone intermediate followed by conjugating with glutathione. M4 was also subject to glucuronidation (M1 and M2) and methylation (M5). Demethylenation, oxidation, hydroxylation, glucuronidation, glutathionylation, and methylation were the primary metabolic pathways of dihydromethysticin. This study provides in vitro metabolism data of dihydromethysticin, which is indispensable for understanding the disposition of this compound.
Collapse
Affiliation(s)
- Cong Cheng
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, P. R. China
| | - Shanshan Zhao
- Jiangsu Wanbang Pharmaceutical Technology Co. Ltd, P. R. China
| | - Yong-Li Gu
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, P. R. China
| | - Jie Pang
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, P. R. China
| | - Yanyun Zhao
- Department of Pharmacy, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, P. R. China
| |
Collapse
|