1
|
Wang Q, Wang R, Zheng C, Zhang L, Meng H, Zhang Y, Ma L, Chen B, Wang J. Anticonvulsant Activity of Bombyx batryticatus and Analysis of Bioactive Extracts Based on UHPLC-Q-TOF MS/MS and Molecular Networking. Molecules 2022; 27:molecules27238315. [PMID: 36500408 PMCID: PMC9740854 DOI: 10.3390/molecules27238315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Bombyx batryticatus (BB) is an anticonvulsant animal medicine in traditional Chinese medicine (TCM) and acts on the central nervous system. This research aimed to study the anticonvulsant effects of different polarity fractions of extracts from BB and to explore the components conferring anticonvulsant activity. Materials and methods: Crude extracts of BB at 20 g/kg were divided into different polarity fractions (petroleum ether, chloroform, ethyl acetate, water) and were administered to groups of mice before injecting pentylenetetrazol (PTZ) to induce convulsions. The animals were placed in chambers, and their behaviors were recorded for 30 min following the injection. Latency time, percent of protection, convulsion, convulsion rate, and convulsion score were determined for these mice. The compounds present in the different fractions were analyzed, and those from the fraction that conferred anticonvulsant activity were identified by high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF MS) and molecular networking (MN). The chloroform extract fractions (B-C) clearly increased the seizure latency time and protection percentage and decreased the convulsion percentage compared to the control group. The anticonvulsant effect of other extract fractions was not significant. Our study shows that the chloroform extract fractions (B-C) of BB have a significant anticonvulsant effect. We also identified 17 compounds including lumichrome, pheophorbide A, and episyringaresinol 4'-O-beta-d-glucopyranose that were found for the first time. The results of this study may lay the groundwork for studying compounds derived from Bombyx batryticatus and their anticonvulsant effect.
Collapse
Affiliation(s)
- Qinglei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rong Wang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Cheng Zheng
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Linlin Zhang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Hong Meng
- Department of Pharmacological Toxicology, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linke Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
- Correspondence: (L.M.); (B.C.); (J.W.)
| | - Bilian Chen
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
- Correspondence: (L.M.); (B.C.); (J.W.)
| | - Juanjuan Wang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
- Correspondence: (L.M.); (B.C.); (J.W.)
| |
Collapse
|
2
|
Prentice RN, Younus M, Rizwan SB. A sensitive LC-MS/MS method for quantification of phenytoin and its major metabolite with application to in vivo investigations of intravenous and intranasal phenytoin delivery. J Sep Sci 2022; 45:2529-2542. [PMID: 35588117 PMCID: PMC9545894 DOI: 10.1002/jssc.202200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Phenytoin is a powerful antiseizure drug with complex pharmacokinetic properties, making it an interesting model drug to use in preclinical in vivo investigations, especially with regards to formulations aiming to improve drug delivery to the brain. Moreover, it has a major metabolite, 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin, which can be simultaneously studied to achieve a better assessment of its behaviour in the body. Here, we describe the development and validation of a sensitive LCMS/MS method for quantification of phenytoin and 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin in rat plasma and brain which can be used in such preclinical studies. Calibration curves produced covered a range of 7.81 to 250 ng/mL (plasma) and 23.4 to 750 ng/g (brain tissue) for both analytes. The method was validated for specificity, sensitivity, accuracy, and precision and found to be within the acceptable limits of ±15% over this range in both tissue types. The method when applied in two in vivo investigations: validation of a seizure model and to study the behaviour of a solution of intranasally administered phenytoin as a foundation for future studies into direct nose‐to‐brain delivery of phenytoin using specifically developed particulate systems, was highly sensitive for detecting phenytoin and 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin in rat plasma and brain.
Collapse
|
3
|
Zhu Y, Zhang H, Ma S, Miao L, Jin G, Li J, Nuerkaman T, Sun Q, Liu Y, Yin S. Stereoselective quantitative analysis of ranolazine in plasma and tissue samples: application in pharmacokinetics and tissue distribution studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj02302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to develop a rapid and sensitive reversed-phase mode high-performance liquid chromatography-electrospray ionization coupled with a tandem mass spectrometry method for the simultaneous determination of ranolazine enantiomers in rat plasma and tissues.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China
| | - Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Lizhi Miao
- Safety Evaluation Center of Shenyang SYRICI Testing Co., Ltd., Shenyang 110141, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, Liaoning, 110034, China
| | - Jiahui Li
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tohutanguli Nuerkaman
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiruo Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yang Liu
- School of Pharmacy, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, Liaoning, 110034, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, Liaoning, 110034, China
| |
Collapse
|