1
|
Deeg J, Swoboda M, Egle D, Wieser V, Soleiman A, Ladenhauf V, Galijasevic M, Amort B, Gruber L. Shear-Wave Elastography Gradient Analysis of Newly Diagnosed Breast Tumours: A Critical Analysis. Diagnostics (Basel) 2024; 14:1657. [PMID: 39125533 PMCID: PMC11312263 DOI: 10.3390/diagnostics14151657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND A better understanding of the peritumoral stroma changes due to tumour invasion using non-invasive diagnostic methods may improve the differentiation between benign and malignant breast lesions. This study aimed to assess the correlation between breast lesion differentiation and intra- and peritumoral shear-wave elastography (SWE) gradients. METHODS A total of 135 patients with newly diagnosed breast lesions were included. Intratumoral, subsurface, and three consecutive peritumoral SWE value measurements (with three repetitions) were performed. Intratumoral, interface, and peritumoral gradients (Gradient 1 and Gradient 2) were calculated using averaged SWE values. Statistical analysis included descriptive statistics and an ordinary one-way ANOVA to compare overall and individual gradients among Breast Imaging-Reporting and Data System (BI-RADS) 2, 3, and 5 groups. RESULTS Malignant tumours showed higher average SWE velocity values at the tumour centre (BI-RADS 2/3: 4.1 ± 1.8 m/s vs. BI-RADS 5: 4.9 ± 2.0 m/s, p = 0.04) and the first peritumoral area (BI-RADS 2/3: 3.4 ± 1.8 m/s vs. BI-RADS 5: 4.3 ± 1.8 m/s, p = 0.003). No significant difference was found between intratumoral gradients (0.03 ± 0.32 m/s vs. 0.0 ± 0.28 m/s; p > 0.999) or gradients across the tumour-tissue interface (-0.17 ± 0.18 m/s vs. -0.13 ± 0.35 m/s; p = 0.202). However, the first peritumoral gradient (-0.16 ± 0.24 m/s vs. -0.35 ± 0.31 m/s; p < 0.0001) and the second peritumoral gradient (-0.11 ± 0.18 m/s vs. -0.22 ± 0.28 m/s; p = 0.037) were significantly steeper in malignant tumours. The AUC was best for PTG1 (0.7358) and PTG2 (0.7039). A threshold value for peritumoral SWI PT1 above 3.76 m/s and for PTG1 below -0.238 m/s·mm-1 indicated malignancy in 90.6% of cases. CONCLUSIONS Evaluating the peritumoral SWE gradient may improve the diagnostic pre-test probability, as malignant tumours showed a significantly steeper curve of the elasticity values in the peritumoral stroma compared to the linear regression with a relatively flat curve of benign lesions.
Collapse
Affiliation(s)
- Johannes Deeg
- Department of Radiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (J.D.); (V.L.); (M.G.); (B.A.); (L.G.)
| | - Michael Swoboda
- Department of Radiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (J.D.); (V.L.); (M.G.); (B.A.); (L.G.)
| | - Daniel Egle
- Department of Obstetrics and Gynaecology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (D.E.); (V.W.)
| | - Verena Wieser
- Department of Obstetrics and Gynaecology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (D.E.); (V.W.)
| | - Afschin Soleiman
- Institute for Pathology, INNPath, University Hospital Tirol Kliniken, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Valentin Ladenhauf
- Department of Radiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (J.D.); (V.L.); (M.G.); (B.A.); (L.G.)
| | - Malik Galijasevic
- Department of Radiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (J.D.); (V.L.); (M.G.); (B.A.); (L.G.)
| | - Birgit Amort
- Department of Radiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (J.D.); (V.L.); (M.G.); (B.A.); (L.G.)
| | - Leonhard Gruber
- Department of Radiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (J.D.); (V.L.); (M.G.); (B.A.); (L.G.)
| |
Collapse
|
2
|
Xu M, Li F, Yu S, Zeng S, Weng G, Teng P, Yang H, Li X, Liu G. Value of Histogram of Gray-Scale Ultrasound Image in Differential Diagnosis of Small Triple Negative Breast Invasive Ductal Carcinoma and Fibroadenoma. Cancer Manag Res 2022; 14:1515-1524. [PMID: 35478712 PMCID: PMC9038159 DOI: 10.2147/cmar.s359986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the value of gray-scale ultrasound (US) image histogram in the differential diagnosis between small (≤2.00 cm), oval, or round triple negative breast invasive ductal carcinoma (TN-IDC) and fibroadenoma (FA). Methods Fifty-five cases of triple negative breast invasive ductal carcinoma (TN-IDC group) and 57 cases of breast fibroadenoma (FA group) confirmed by pathology in Hubei cancer hospital from September 2017 to September 2021 were analyzed retrospectively. The gray-scale US images were analyzed by histogram analysis method, from which some parameters (including mean, variance, skewness, kurtosis and 1st, 10th, 50th, 90th and 99th percentile) can be obtained. Intraclass correlation coefficient (ICC) was used to evaluate the inter observer reliability of histogram parameters. Histogram parameters between the TN-IDC and FA groups were compared using independent Student’s t-test or Mann-Whitney U-test, respectively. In addition, the receiver operating characteristic (ROC) curve analysis was used for the significant parameters to calculate the differential diagnosis efficiency. Results All the histogram parameters showed excellent inter-reader consistency, with the ICC values ranged from 0.883 to 0.999. The mean value, 1st, 10th, 50th, 90th and 99th percentiles of TN-IDC group were significantly lower than those of FA group (P < 0.05). The area under ROC curve (AUC) values of mean and n percentiles were from 0.807 to 0.848. However, there were no significant differences in variance, skewness and kurtosis between the two groups (P > 0.05). Conclusion Histogram analysis of gray-scale US images can well distinguish small, oval, or round TN-IDC from FA.
Collapse
Affiliation(s)
- Maolin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Fang Li
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shaonan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Shue Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Gaolong Weng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peihong Teng
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huimin Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xuefeng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xuefeng Li, Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, People’s Republic of China, Email
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Guifeng Liu, Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, People’s Republic of China, Email
| |
Collapse
|