1
|
Chen R, Tan F, Wang X, Hou Y, Ouyang M, Guan X, Liu P, Wu Z, Yao S, Suib SL, Ye D. Inhibition Effect of H 2O on the Heterogeneous Reaction between Isoprene and Fe-Substituted Cryptomelane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7814-7823. [PMID: 40072899 DOI: 10.1021/acs.langmuir.5c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The transportation and transformation of biogenic isoprene are vital for the organic carbon cycle in the troposphere. As a typical mineral with high oxidation potential, Fe-substituted cryptomelane oxidizes the surface monolayer of isoprene into formic and acetic acids, and simultaneously, the Mn4+ ions in the structure are reduced to Mn3+ and Mn2+. The flow of H2O in isoprene decreases the adsorption and oxidation of isoprene significantly, even at low relative humidity (10%). As physisorbed H2O retains Fe-substituted cryptomelane's crystal structure and oxidation ability, the adsorption and oxidation capacity recovers when H2O is absent in the isoprene flow. Theoretical calculations on (001) surfaces show that isoprene prefers to be adsorbed by the Fe3+ site and H2O tends to form hydrogen bonds. Due to the decrease in total adsorption energy of H2O and isoprene, Fe-substituted cryptomelane favors the adsorption of H2O in the flow of humid isoprene. The low oxidation performance at ambient relative humidity suggests that direct oxidation by aerosols of mineral dust might not be the transformation pathway of biogenic isoprene at night.
Collapse
Affiliation(s)
- Ruoyi Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Fuding Tan
- State Key Laboratory of Deep Earth Processes and Resources/Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yuxin Hou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Ming Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xingyun Guan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Zuliang Wu
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, People's Republic of China
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
| | - Shuiliang Yao
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, People's Republic of China
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
2
|
Liu P, Kong Y, Liang X, Liao Y, Li T, Tan D, Zhu R, Fu M, Suib SL, Ye D. Effect of iron substitution in cryptomelane on the heterogeneous reaction with isoprene. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129293. [PMID: 35724618 DOI: 10.1016/j.jhazmat.2022.129293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Biogenic isoprene is an important pollutant for regional air quality. Being ubiquitously distributed on the earth surface, manganese (hydr)oxides should play a vital role in the transformation of isoprene. Cryptomelane is a typical manganese oxide with isomorphous substitution of Fe for Mn, but less attention has been paid to its heterogeneous reaction with isoprene. When Fe3+ replaces Mn3+, K+ is depleted and Mn3+ is oxidized to Mn4+. In contrast, oxygen vacancies are formed when Fe3+ substitutes Mn4+. Fe substitution creates weak crystallites and abundant mesopores, resulting in the increase of isoprene adsorption. As found by theoretical calculations, the Mn4+-O2- bonds at the cross sections of the tunnels is more active than that on the outer wall of the tunnels. After the adsorption of isoprene, bridging carboxylate species and hydrogen-bonding water are produced and the surface octahedra are distorted, i.e., Mn4+O6 → Mn3+O6-δ. As the heat facilitates the breakage of Mn4+-O2-, the increase of environmental temperature enhances the oxidation of isoprene. The above findings shed light on the effect of Fe substitution in cryptomelane to enhance the oxidation of isoprene, and illustrates that heterogeneous reaction with isoprene impairs the transformation of other environmental substances on cryptomelane.
Collapse
Affiliation(s)
- Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yilian Kong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Yuxi Liao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Tan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Daoyong Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Lv SY, Liu QY, Zhao YX, He SG. Photooxidation of Isoprene by Titanium Oxide Cluster Anions with Dimensions up to a Nanosize. J Am Chem Soc 2021; 143:3951-3958. [PMID: 33656327 DOI: 10.1021/jacs.1c00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Titania (TiO2) nanoparticles are active photocatalysts, and isoprene (C5H8) is a biogenic volatile organic compound that contributes crucially to global particulate matter generation. Herein, the direct photooxidation of isoprene by titanium oxide cluster anions with dimensions up to a nanosize by both ultraviolet (UV) and visible (Vis) light excitations has been successfully identified through mass spectrometric experiments combined with quantum chemistry calculations. The potential role of "dry" titania in atmospheric isoprene oxidation has been revealed, and a clear picture of the photooxidation mechanism on titanium oxide nanoparticles has been provided explicitly at the molecular level. The adsorption of isoprene on the atomic oxygen radicals (O•-) of titanium oxide clusters leads to the formation of the crucial interfacial state (IS) within the band gap of titanium oxides. This IS is demonstrated to be the significant factor in delivering the electron from the π orbital of C5H8 to the Ti3d orbital in the photooxidation process (C5H8 + Ti4+-O•- → C5H8O + Ti3+) and creating photoactivity in the Vis region. It is revealed that after the photogeneration of the O•- radicals by UV excitation on the TiO2 particle surface, the subsequent reactions can be induced by Vis excitation through the IS. This multicolor strategy in both the UV and Vis regions can enhance the efficiency of solar energy harvesting and improve the product yield of the photocatalysis on TiO2 nanoparticles. New insights have been provided into both the atmospheric chemistry of isoprene and the photochemistry of TiO2 nanoparticles.
Collapse
Affiliation(s)
- Shi-Ying Lv
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
4
|
Li SQ, Lv SY, Zhou HY, Ding YQ, Liu QY, Ma JB. Oxidation of isoprene by titanium oxide cluster cations in the gas phase. Phys Chem Chem Phys 2020; 22:27357-27363. [PMID: 33231227 DOI: 10.1039/d0cp05472k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneous oxidation of isoprene (C5H8) by metal-oxide particles, such as the typical mineral aerosols TiO2, plays an important role in the isoprene atmospheric chemistry. However, the underlying mechanism of C5H8 oxidation remains elusive owing to the complexities of aerosol surfaces and reaction channels. Herein, we report the gas-phase reactions of TixOy+ (x = 1-7, y = 1-14) cations with isoprene by using mass spectrometry and density functional theory (DFT) calculations. Five types of reaction channels were observed: association, hydrogen atom transfer (HAT), C-C bond cleavage, combined oxygen atom transfer (OAT) and HAT and combined OAT and C-C bond cleavage. It is noteworthy that formaldehyde is known as the major oxidation product of isoprene/hydroxyl radicals in the atmosphere. In addition, CO has not been observed in the reactions of isoprene with gas-phase ions. Therefore, the reaction mechanisms of CH2O and CO generation observed in Ti2O5+/C5H8 and Ti4O8+/C5H8 systems were further investigated by DFT calculations, and the calculated results are in agreement with the experimental observations. In these two reactions, both Ti and O atoms can be the adsorption sites for C5H8. The reaction channels and mechanistic information gained in these gas-phase model reactions may offer fundamental insights relevant to the corresponding oxidation processes over titanium oxide aerosols in the atmosphere.
Collapse
Affiliation(s)
- Shu-Qiang Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
5
|
Romanias MN, Ren Y, Grosselin B, Daële V, Mellouki A, Dagsson-Waldhauserova P, Thevenet F. Reactive uptake of NO 2 on volcanic particles: A possible source of HONO in the atmosphere. J Environ Sci (China) 2020; 95:155-164. [PMID: 32653175 DOI: 10.1016/j.jes.2020.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The heterogeneous degradation of nitrogen dioxide (NO2) on five samples of natural Icelandic volcanic particles has been investigated. Laboratory experiments were carried out under simulated atmospheric conditions using a coated wall flow tube (CWFT). The CWFT reactor was coupled to a blue light nitrogen oxides analyzer (NOx analyzer), and a long path absorption photometer (LOPAP) to monitor in real time the concentrations of NO2, NO and HONO, respectively. Under dark and ambient relative humidity conditions, the steady state uptake coefficients of NO2 varied significantly between the volcanic samples probably due to differences in magma composition and morphological variation related with the density of surface OH groups. The irradiation of the surface with simulated sunlight enhanced the uptake coefficients by a factor of three indicating that photo-induced processes on the surface of the dust occur. Furthermore, the product yields of NO and HONO were determined under both dark and simulated sunlight conditions. The relative humidity was found to influence the distribution of gaseous products, promoting the formation of gaseous HONO. A detailed reaction mechanism is proposed that supports our experimental observations. Regarding the atmospheric implications, our results suggest that the NO2 degradation on volcanic particles and the corresponding formation of HONO is expected to be significant during volcanic dust storms or after a volcanic eruption.
Collapse
Affiliation(s)
| | | | | | | | | | - Pavla Dagsson-Waldhauserova
- Agricultural University of Iceland, Keldnaholt, Reykjavik 112, Iceland; Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 165 21, Czech Republic
| | | |
Collapse
|
6
|
|