1
|
Hearing Loss Caused by HCMV Infection through Regulating the Wnt and Notch Signaling Pathways. Viruses 2021; 13:v13040623. [PMID: 33917368 PMCID: PMC8067389 DOI: 10.3390/v13040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Hearing loss is one of the most prevalent sensory disabilities worldwide with huge social and economic burdens. The leading cause of sensorineural hearing loss (SNHL) in children is congenital cytomegalovirus (CMV) infection. Though the implementation of universal screening and early intervention such as antiviral or anti-inflammatory ameliorate the severity of CMV-associated diseases, direct and targeted therapeutics is still seriously lacking. The major hurdle for it is that the mechanism of CMV induced SNHL has not yet been well understood. In this review, we focus on the impact of CMV infection on the key players in inner ear development including the Wnt and Notch signaling pathways. Investigations on these interactions may gain new insights into viral pathogenesis and reveal novel targets for therapy.
Collapse
|
2
|
Wang J, Song Q. Inhibition of connexin 43 induces hearing loss in postnatal mice. Physiol Int 2021. [PMID: 33769954 DOI: 10.1556/2060.2021.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Connexin 43 (Cx43) is the most ubiquitously expressed member of the family of connexins, constituting gap junctions and mediating cell communication, still its role in hearing loss has been little studied. METHODS Immunohistochemistry was used to detect the expression pattern of Cx43. Spiral ganglia neurons (SGNs) and Corti co-culture were utilized to assay the re-innervation of hair cells by newborn SGNs. Gap19 was utilized to inhibit Cx43 hemichannels. Auditory brainstem responses (ABR) and endocochlear potential (E.P.) were measured to confirm the hearing loss. RESULTS The expression of Cx43 in P14 mice was higher than in P0 and P28 (adult) mice, the earlier time point coinciding with the early inner ear development. Additionally, the growth and synapse generation of fibers were inhibited after Gap 19 treatment of the co-cultures of the Corti and SGNs from newborn mice. Furthermore, the inhibition of Cx43 could increase the ABR threshold and decrease E.P. level in postnatal mice, whereas such an effect was not observed in adult mice. CONCLUSION The function of Cx43 is critical during the early development of mouse cochlea but is dispensable in adult mice.
Collapse
Affiliation(s)
- J Wang
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang 261100, Shandong, China
| | - Q Song
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang 261100, Shandong, China
| |
Collapse
|
3
|
Zhang J, Wang X, Hou Z, Neng L, Cai J, Zhang Y, Shi X. Suppression of Connexin 43 Leads to Strial Vascular Hyper-Permeability, Decrease in Endocochlear Potential, and Mild Hearing Loss. Front Physiol 2020; 11:974. [PMID: 32922309 PMCID: PMC7457066 DOI: 10.3389/fphys.2020.00974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Connexin 43 (Cx43) is a protein constituent of gap junctions (GJs) in various barrier cells, especially astrocytes and microglia of the blood-brain-barrier (BBB), where it plays an important role in intercellular communication and regulation of the barrier. Despite the importance of Cx43 in other blood barriers, not much attention has been paid to expression and function of Cx43 in the blood-labyrinth-barrier (BLB) of the stria vascularis in the cochlea. Methods: We used multiple research approaches, including immunocytochemical staining, patch-clamp dye loading technique, real-time quantitative reverse transcription (RT)-PCR, western blot, measurement of endocochlear potential (EP) with an electrode through the scala media, and auditory brainstem response to test hearing function. Results: We found Cx43 expressed in vascular endothelial cells (ECs) and perivascular resident macrophages (PVMs) in the stria vascularis of adult C57BL/6 mouse cochleae. In particular, we found Cx43 expressed in foot processes of PVMs at points of contact with the endothelium. Consistent with Cx43 expression in vivo, we also found Cx43 expressed in EC-EC and EC-PVM interfaces in a co-cultured cell line model. Using a patch-clamp dye loading technique, we demonstrated that Alexa Fluor® 568 dye injected into PVMs diffuses to connected neighboring ECs. The functional coupling between the ECs and PVMs is blocked by 18α-Glycyrrhetinic acid (18α-GA), a GJ blocker. Suppression of Cx43 with small interfering RNA (siRNA) in vivo significantly elevated hearing threshold and caused the EP to drop and the blood barrier to become more permeable. In further study, using in vitro primary EC cell line models, we demonstrated that suppression of Cx43 disrupts intercellular tight junctions (TJs) in the EC monolayer and increases endothelial monolayer permeability. Conculsion: Taken together, these findings underscore the importance of Cx43 expression in the normal ear for maintaining BLB integrity, normal EP, and hearing function.
Collapse
Affiliation(s)
- Jinhui Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaohan Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Lingling Neng
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jing Cai
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Yunpei Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaorui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Auditory and Olfactory Deficits in Essential Tremor - Review of the Current Evidence. Tremor Other Hyperkinet Mov (N Y) 2020; 10:3. [PMID: 32775017 PMCID: PMC7394198 DOI: 10.5334/tohm.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Essential tremor (ET) is the most common adult movement disorder, characterized by several motor and increasingly well recognized non-motor symptoms. Sensory deficits, such as hearing impairment and olfactory dysfunction, are amongst them. This review analyzes the available evidence of these sensory deficits and their possible mechanistic basis in patients with ET. Method: A PubMed literature search on the topic was performed in the May 2019 database. Results: Nineteen articles on hearing impairment and olfactory dysfunction in ET patients were identified. The prevalence of hearing impairment is higher in ET patients than healthy controls or Parkinson disease. Cochlear pathologies are suggested as the underlying cause, but there is still a lack of information about retrocochlear pathologies and central auditory processing. Reports on olfactory dysfunction have conflicting results. The presence of mild olfactory dysfunction in ET was suggested. Conflicting results may be due to the lack of consideration of the disease’s heterogeneity, but according to recent data, most studies do not find prominent evidence of olfactory loss in ET. Conclusion: Although there is increasing interest in studies on non-motor symptoms in ET, there are few studies on sensory deficits, which are of particularly high prevalence. More studies are needed on to investigate the basis of non-motor symptoms, including sensory deficits.
Collapse
|
5
|
Abitbol J, Beach R, Barr K, Esseltine J, Allman B, Laird D. Cisplatin-induced ototoxicity in organotypic cochlear cultures occurs independent of gap junctional intercellular communication. Cell Death Dis 2020; 11:342. [PMID: 32393745 PMCID: PMC7214471 DOI: 10.1038/s41419-020-2551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Cisplatin is a very effective chemotherapeutic, but severe and permanent hearing loss remains a prevalent side effect. The processes underpinning cisplatin-induced ototoxicity are not well understood. Gap junction channels composed of connexin (Cx) subunits allow for the passage of small molecules and ions between contacting neighboring cells. These specialized channels have been postulated to enhance cisplatin-induced cell death by spreading “death signals” throughout the supporting cells of the organ of Corti. This study sought to investigate the role of Cx43 in cisplatin-induced ototoxicity using organotypic cochlear cultures from control and two Cx43-mutant mouse strains harboring either a moderate (Cx43I130T/+) or severe (Cx43G60S/+) reduction of Cx43 function. Cochlear cultures from Cx43-mutant mice with a severe reduction in Cx43-based gap junctional intercellular communication (GJIC) had an enhanced number of hair cells that were positive for cleaved caspase 3, a marker of active apoptosis, after cisplatin treatment. In cisplatin-treated organotypic cochlear cultures, there was a decrease in the co-localization of Cx26 and Cx30 compared with untreated cultures, suggesting that cisplatin causes reorganization of connexin composition in supporting cells. Both Cx26 and Cx30 protein expression as well as GJIC were decreased in organotypic cochlear cultures treated with the gap-junction blocker carbenoxolone. When cisplatin and carbenoxolone were co-administered, there were no differences in hair cell loss compared with cisplatin treatment alone. Using cisplatin-treated control and Cx43-ablated organ of Corti derived HEI-OC1 mouse cells, we found that greatly reducing GJIC led to preferential induction of an ER stress pathway. Taken together, this study strongly suggests that inhibition of GJIC in organ of Corti cells does not lead to differential susceptibility to cisplatin-induced ototoxicity. Although cisplatin causes the same degree of cell death in gap junction competent and incompetent cochlear cells, the engagement of the mitochondrial dysregulation and ER stress differs.
Collapse
Affiliation(s)
- Julia Abitbol
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Rianne Beach
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Kevin Barr
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jessica Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Brian Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Dale Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
6
|
Wadle SL, Augustin V, Langer J, Jabs R, Philippot C, Weingarten DJ, Rose CR, Steinhäuser C, Stephan J. Anisotropic Panglial Coupling Reflects Tonotopic Organization in the Inferior Colliculus. Front Cell Neurosci 2018; 12:431. [PMID: 30542265 PMCID: PMC6277822 DOI: 10.3389/fncel.2018.00431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Astrocytes and oligodendrocytes in different brain regions form panglial networks and the topography of such networks can correlate with neuronal topography and function. Astrocyte-oligodendrocyte networks in the lateral superior olive (LSO)-an auditory brainstem nucleus-were found to be anisotropic with a preferred orientation orthogonally to the tonotopic axis. We hypothesized that such a specialization might be present in other tonotopically organized brainstem nuclei, too. Thus, we analyzed gap junctional coupling in the center of the inferior colliculus (IC)-another nucleus of the auditory brainstem that exhibits tonotopic organization. In acute brainstem slices obtained from mice, IC networks were traced employing whole-cell patch-clamp recordings of single sulforhodamine (SR) 101-identified astrocytes and concomitant intracellular loading of the gap junction-permeable tracer neurobiotin. The majority of dye-coupled networks exhibited an oval topography, which was preferentially oriented orthogonal to the tonotopic axis. Astrocyte processes showed preferentially the same orientation indicating a correlation between astrocyte and network topography. In addition to SR101-positive astrocytes, IC networks contained oligodendrocytes. Using Na+ imaging, we analyzed the capability of IC networks to redistribute small ions. Na+ bi-directionally diffused between SR101-positive astrocytes and SR101-negative cells-presumably oligodendrocytes-showing the functionality of IC networks. Taken together, our results demonstrate that IC astrocytes and IC oligodendrocytes form functional anisotropic panglial networks that are preferentially oriented orthogonal to the tonotopic axis. Thus, our data indicate that the topographic specialization of glial networks seen in IC and LSO might be a general feature of tonotopically organized auditory brainstem nuclei.
Collapse
Affiliation(s)
- Simon L Wadle
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Augustin
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Julia Langer
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Camille Philippot
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dennis J Weingarten
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonathan Stephan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
7
|
Abitbol JM, Kelly JJ, Barr KJ, Allman BL, Laird DW. Mice harbouring an oculodentodigital dysplasia-linked Cx43 G60S mutation have severe hearing loss. J Cell Sci 2018; 131:jcs.214635. [DOI: 10.1242/jcs.214635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
Given the importance of connexin43 (Cx43) function in the central nervous system and sensory organ processing we proposed that it would also be crucial in auditory function. To that end, hearing was examined in two mouse models of oculodentodigital dysplasia that globally express GJA1 (Cx43) mutations resulting in mild or severe loss of Cx43 function. Although Cx43I130T/+ mutant mice with ∼50% Cx43 channel function did not have any hearing loss, Cx43G60S/+ mutant mice with ∼20% Cx43 channel function had severe hearing loss. There was no evidence of inner ear sensory hair cell loss, suggesting that the Cx43-linked hearing loss lies downstream in the auditory pathway. Since evidence suggests that Cx26 function is essential for hearing and may be protective against noise-induced hearing loss, we challenged Cx43I130T/+ mice with a loud noise and found that they had similar susceptibility to noise-induced hearing loss as controls suggesting that decreased Cx43 function does not sensitize the mice for environmentally-induced hearing loss. Taken together, this study suggests that Cx43 plays an important role in baseline hearing and is essential for auditory processing.
Collapse
Affiliation(s)
| | - John J. Kelly
- University of Western Ontario, London, Ontario, Canada
| | - Kevin J. Barr
- University of Western Ontario, London, Ontario, Canada
| | | | - Dale W. Laird
- University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Augustin V, Bold C, Wadle SL, Langer J, Jabs R, Philippot C, Weingarten DJ, Rose CR, Steinhäuser C, Stephan J. Functional anisotropic panglial networks in the lateral superior olive. Glia 2016; 64:1892-911. [PMID: 27458984 DOI: 10.1002/glia.23031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes form large gap junctional networks that contribute to ion and neurotransmitter homeostasis. Astrocytes concentrate in the lateral superior olive (LSO), a prominent auditory brainstem center. Compared to the LSO, astrocyte density is lower in the region dorsal to the LSO (dLSO) and in the internuclear space between the LSO, the superior paraolivary nucleus (SPN). We questioned whether astrocyte networks exhibit certain properties that reflect the precise neuronal arrangement. Employing whole-cell patch-clamp and concomitant injection of a gap junction-permeable tracer, we analyzed size and orientation of astrocyte networks in LSO, dLSO, and SPN-LSO in acute brainstem slices of mice at postnatal days 10-20. The majority of LSO networks exhibited an oval topography oriented orthogonally to the tonotopic axis, whereas dLSO networks showed no preferred orientation. This correlated with the overall astrocyte morphology in both regions, i.e. LSO astrocyte processes were oriented mainly orthogonally to the tonotopic axis. To assess the spread of small ions within LSO networks, we analyzed the diffusion of Na(+) signals between cells using Na(+) imaging. We found that Na(+) not only diffused between SR101(+) astrocytes, but also from astrocytes into SR101(-) cells. Using PLP-GFP mice for tracing, we could show that LSO networks contained astrocytes and oligodendrocytes. Together, our results demonstrate that LSO astrocytes and LSO oligodendrocytes form functional anisotropic panglial networks that are oriented predominantly orthogonally to the tonotopic axis. Thus, our results point toward an anisotropic ion and metabolite diffusion and a limited glial crosstalk between neighboring isofrequency bands in the LSO. GLIA 2016;64:1892-1911.
Collapse
Affiliation(s)
- Vanessa Augustin
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, Kaiserslautern, Germany
| | - Charlotte Bold
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, Kaiserslautern, Germany
| | - Simon L Wadle
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, Kaiserslautern, Germany
| | - Julia Langer
- Institute of Neurobiology, Universitaetsstasse 1, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ronald Jabs
- Medical Faculty, Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | - Camille Philippot
- Medical Faculty, Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | - Dennis J Weingarten
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, Kaiserslautern, Germany
| | - Christine R Rose
- Institute of Neurobiology, Universitaetsstasse 1, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christian Steinhäuser
- Medical Faculty, Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | - Jonathan Stephan
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, Kaiserslautern, Germany.
| |
Collapse
|
9
|
Fergus DJ, Feng NY, Bass AH. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish. BMC Genomics 2015; 16:782. [PMID: 26466782 PMCID: PMC4607102 DOI: 10.1186/s12864-015-1940-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. RESULTS We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. CONCLUSIONS We identified a suite of differentially expressed genes belonging to neurotransmission and steroid-signaling pathways, consistent with previous work showing the importance of these characters in regulating hair cell auditory sensitivity in midshipman fish and, more broadly, vertebrates. The results were also consistent with auditory hair cells being generally more physiologically active when animals are in a reproductive state, a time of enhanced sensory-motor coupling between the auditory periphery and the upper harmonics of vocalizations. Together with several new candidate genes, our results identify discrete patterns of gene expression linked to frequency- and steroid-dependent plasticity of hair cell auditory sensitivity.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, Raleigh, NC, 27601, USA.
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Wingard JC, Zhao HB. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness. Front Cell Neurosci 2015; 9:202. [PMID: 26074771 PMCID: PMC4448512 DOI: 10.3389/fncel.2015.00202] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required.
Collapse
Affiliation(s)
- Jeffrey C Wingard
- Department of Otolaryngology, University of Kentucky Medical Center , Lexington, KY , USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center , Lexington, KY , USA
| |
Collapse
|
11
|
Liu WJ, Yang J. Preferentially regulated expression of connexin 43 in the developing spiral ganglion neurons and afferent terminals in post-natal rat cochlea. Eur J Histochem 2015; 59:2464. [PMID: 25820563 PMCID: PMC4378217 DOI: 10.4081/ejh.2015.2464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022] Open
Abstract
The expression pattern of connexin 43 (Cx43) in the cochlea is not determined and is controversial. Since the presence of Cx43 is essential for hearing, we re-examined its distribution during post-natal development of rat cochlea. Cx43 protein was expressed in spiral ganglion neurons (SGNs) and their neurite terminals innervating the inner and outer hair cells (IHCs and OHCs) as early as birth (postnatal day 0, P0), and persisted until P14. Double immunofluorescence staining, using two antibodies against Cx43 and TUJ1, a marker for all SGNs and afferent terminals, showed that immunoreactivity for Cx43 and TUJ1 was perfectly colocalized in SGNs and afferent terminals associated with the IHCs and OHCs. However, beyond P14, Cx43 immunostaining could no longer be detected in the region of the synaptic terminals at the bases of IHCs and OHCs (P17, adult). In contrast, Cx43 maintained its expression in SGNs into adulthood. We further performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) to identify the presence of Cx43 mRNA in the modiolus (mainly containing SGNs). Cx43 mRNA was higher at P8, compared with P1, and subsequently decreased at P14. These results indicated that Cx43 correlated with cochlear synaptogenesis and establishment of auditory neurotransmission.
Collapse
Affiliation(s)
- W J Liu
- Xinhua Hospital, Shanghai Jiaotong University, Shanghai Jiaotong University Ear Institute.
| | | |
Collapse
|