1
|
Lackey TG, Allen A, McCabe N, Clary M, Green KK, Fink DS. Are We Missing Obstructive Sleep Apnea in Patients With Non-traumatic Subglottic Stenosis? Ann Otol Rhinol Laryngol 2025; 134:266-273. [PMID: 39654324 DOI: 10.1177/00034894241305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
OBJECTIVE To investigate the association between subglottic stenosis (SGS) and obstructive sleep apnea (OSA). METHODS This is a cross-sectional pilot cohort study conducted at a single tertiary academic center from 2022 to 2023. Subjects with non-traumatic SGS were recruited for enrollment. All subjects completed a peak expiratory flow (PEF) measurement, validated sleep questionnaires: Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Index (PSQI), and a 1-night home sleep test (HST). Demographic data were summarized. Prevalence was calculated and descriptively compared to a matched population. Partial correlation analysis evaluated the relationship of PEF% and Meyer-Cotton grading, in addition to PEF% and apnea-hypopnea index (AHI). Sleep quality was compared in subjects with and without OSA via a Mann-Whitney U test. RESULTS Twenty subjects participated; all were Caucasian females with a mean age of 48.4 (10.4) years and a body mass index (BMI) of 24.1 (3.8). The majority (80%) had idiopathic SGS, and a mean PEF 288 (71) L/min. OSA was present in 40% of subjects, of which 15% had moderate OSA. PEF% did not correlate to AHI (P > .05). Poor sleep quality (PSQI ≥ 5) was present in 70% of subjects and 20% had excessive daytime sleepiness (ESS > 9). PSQI and ESS did not differ between subjects with and without OSA (P > .05). CONCLUSION OSA prevalence is elevated in a cohort of subjects with SGS. Further study of airway dilation's impact on OSA is necessary. Screening and surveillance for OSA in patients with subglottic stenosis may need to be considered based on this study's findings.Level of Evidence: Level 3.
Collapse
Affiliation(s)
- Taylor G Lackey
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Avery Allen
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Nevan McCabe
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Matthew Clary
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Katherine K Green
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Daniel S Fink
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
2
|
Salmanipour S, Sokhansanj A, Jafari N, Hamishehkar H, Saha SC. Engineering nanoliposomal tiotropium bromide embedded in a lactose-arginine carrier forming Trojan-particle dry powders for efficient pulmonary drug delivery: A combined approach of in vitro-3D printing and in silico-CFD modeling. Int J Pharm 2025; 671:125171. [PMID: 39798623 DOI: 10.1016/j.ijpharm.2025.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features. This formulation was examined through in vitro-3D-printing and in silico-CFD analysis. Nanoliposomes and powder were evaluated for physicochemical attributes, aerosolization, encapsulation-efficiency (EE%), and release. Both liposomes (90 nm) and powder particles (3 µm) were spherical. Liposomes had an EE% over 95 % and a zeta-potential of -28.3 mV. The optimal formulation was tested in vitro at 30, 60, and 90 L/min using a 3D-printed airway replica. CFD analysis evaluated particle deposition in steady and realistic inhalation with monodisperse and polydisperse particles. Based on realistic airway geometry, model utilized k-ω-SST turbulence model for the continuous phase and Lagrangian-DEM for the discrete phase, analyzed through ANSYS Fluent. The 20 %-arginine nanoliposomal-tiotropium formulation outperformed others due to arginine's dispersibility and therapeutic benefits, including nitric oxide conversion. The formulation competes with commercial dry powders due to its chemical, biochemical advantages, and Trojan-based physical traits, reducing exhalation risk. Simulation data aligned with experimental findings, showing that higher inhalation flows increase particle deposition in airways due to greater inertia and turbulence. At 60 L/min, the polydisperse model matched experimental data better than the monodisperse model. Alongside improving dry powder performance via a nanoliposomal formulation, this research highlights the development of a novel CFD method for their assessment.
Collapse
Affiliation(s)
- Salar Salmanipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Sokhansanj
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Nahideh Jafari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street Baku, AZ1096, Azerbaijan.
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia.
| |
Collapse
|
3
|
Campos LD, Trindade IEK, Trindade SHK, Pimenta LAF, Kimbell J, Drake A, Marzano-Rodrigues MN, Trindade-Suedam IK. Effects of 3D Airway Geometry on the Airflow of Adults with Cleft Lip and Palate and Obstructive Sleep Apnea: A Functional Imaging Study. Sleep Sci 2023; 16:e430-e438. [PMID: 38197022 PMCID: PMC10773502 DOI: 10.1055/s-0043-1776868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/09/2023] [Indexed: 01/11/2024] Open
Abstract
Objective Individuals with cleft lip and palate (CLP) are at a high risk of developing obstructive sleep apnea (OSA). Hypothetically, the severity of OSA might be associated with the morphology of the upper airway (UAW) and the characteristics of the airflow. Thus, the present study aimed to assess and compare, in adults with CLP and skeletal class-III discrepancy, with or without OSA, simulations of airflow resistance and pressure according to the geometrical characteristics of the UAW and cephalometric parameters. Materials and Methods According to the results of type-I polysomnography tests, the sample ( n = 21) was allocated in 2 groups: 1) without OSA (N-OSA; n = 6); and 2) with OSA (OSA; n = 15). Cephalometric measurements were performed on the cone-beam computed tomography (CBCT) scans of the groups. After three-dimensional (3D) reconstructions, the volume (V) and minimal cross-sectional area (mCSA) of the UAW were generated. Computational fluid dynamics (CFD) simulations were used to assess key airflow characteristics. The results were presented at a significance level of 5%. Results The UAW pressure values and airway resistance did not differ between the groups, but there was a tendency for more negative pressures (26%) and greater resistance (19%) in the OSA group. Volume and mCSA showed a moderate negative correlation with resistance and pressure. The more inferior the hyoid bone, the more negative the pressures generated on the pharyngeal walls. Conclusion The position of the hyoid bone and the geometry of the UAW (V and mCSA) exerted effects on the airway-airflow resistance and pressure. However, key airflow characteristics did not differ among subjects with CLP, were they affected or not by OSA.
Collapse
Affiliation(s)
- Leticia Dominguez Campos
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
| | - Inge Elly Kiemle Trindade
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
- School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Sergio Henrique Kiemle Trindade
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
- Department of Pediatric Dentistry, Orthodontics and Public Health, School of Medicine, Universidade de São Paulo, Bauru, SP, Brazil
| | - Luiz André Freire Pimenta
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| | - Julia Kimbell
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Amelia Drake
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Maria Noel Marzano-Rodrigues
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
| | - Ivy Kiemle Trindade-Suedam
- Laboratory of Physiology, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, Bauru, SP, Brazil
- School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, Bauru, SP, Brazil
| |
Collapse
|
4
|
Ding M, Ning J, Liu X, Mi R, Cai Y. Stenotic geometry effects on airflow dynamics and respiration for central airway obstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107760. [PMID: 37573642 DOI: 10.1016/j.cmpb.2023.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The quantitative relationship between tracheal anatomy and ventilation function can be analyzed by using engineering-derived methods, including mathematical modeling and numerical simulations. In order to provide quantitative functional evaluation for patients with tracheobronchial stenosis, we here propose an aerodynamics-based assessment method by applying computational fluid dynamics analysis on synthetic and patient-specific airway models. METHODS By using 3D reconstruction of tracheobronchial tree and computational fluid dynamics simulations, the aerodynamic environment from the stenotic central airway down to the 4th-6th bifurcation of the tracheobronchial tree is examined in both synthetic and patient-derived models. The effects of stenotic anatomy (the degree of stenosis, stenotic length and location) on the aerodynamic parameters, including pressure drop, area-average velocity, volume flow rate, wall shear stress and airflow resistance, are investigated on three-dimensional models of tracheobronchial tree. RESULTS The results from 36 synthetic models demonstrate that 70% constriction marks the onset of a precipitous decrease in airflow relative to a normal airway. The analyses of simulation results of 8 patient-specific models indicate that the Myer-Cotton stenosis grading system can be interpreted in terms of aerodynamics-derived description, such as flow resistance. The tracheal stenosis significantly influences the resistance of peripheral bronchi, especially for patients with severe stenosis. CONCLUSIONS The present study forms a systematic framework for future development of more robust, bioengineering-informed evaluation methods for quantitative assessment of respiratory function of patients with central airway obstruction.
Collapse
Affiliation(s)
- Ming Ding
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Jing Ning
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Xiuyan Liu
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Runze Mi
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yan Cai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Hudson TJ, Oubahou RA, Mongeau L, Kost K. Airway Resistance and Respiratory Distress in Laryngeal Cancer: A Computational Fluid Dynamics Study. Laryngoscope 2023; 133:2734-2741. [PMID: 36951521 PMCID: PMC10517074 DOI: 10.1002/lary.30649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Obstructive upper airway pathologies are a great clinical challenge for the airway surgeon. Protection against acute obstruction is critical, but avoidance of unnecessary tracheostomy must also be considered. Decision-making regarding airway, although supported by some objective findings, is largely guided by subjective experience and training. This investigation aims to study the relationship between clinical respiratory distress and objective measures of airway resistance in laryngeal cancer as determined by computational fluid dynamic (CFD) and morphometric analysis. METHODS Retrospective CT and clinical data were obtained for series of 20 cases, defined as newly diagnosed laryngeal cancer patients who required admission or urgent airway surgery, and 20 controls. Cases and controls were matched based on T-staging. Image segmentation and morphometric analysis were first performed. Computational models based on the lattice Boltzmann method were then created and used to quantify the continuous mass flow, rigid wall, and constant static pressure inlet boundary conditions. RESULTS The analysis demonstrated a significant relationship between airway resistance and acute obstruction (OR 1.018, 95% CI 1.001-1.045). Morphometric analysis similarly demonstrated a significant relationship when relating measurements based on the minimum cross-section, but not on length of stenosis. Morphometric measurements also showed significance in predicting CFD results, and their relationship demonstrated that airway pressures increase exponentially below 2.5 mm. Tumor subsite did not show a significant difference, although the glottic subgroup tended to have higher resistances. CONCLUSION Airway resistance analysis from CFD computation correlated with presence of acute distress requiring emergent management. Morphometric analysis showed a similar correlation, demonstrating a radiologic airway assessment technique on which future risk estimation could be performed. LEVEL OF EVIDENCE 4 (case-control study) Laryngoscope, 133:2734-2741, 2023.
Collapse
Affiliation(s)
- Thomas J. Hudson
- Department of Otolaryngology – Head and Neck Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Rayane Ait Oubahou
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Karen Kost
- Department of Otolaryngology – Head and Neck Surgery, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
6
|
Gosman RE, Sicard RM, Cohen SM, Frank-Ito DO. A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway. EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW 2023; 5:235-246. [PMID: 37305073 PMCID: PMC10024600 DOI: 10.1007/s42757-022-0151-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 06/13/2023]
Abstract
Laryngotracheal stenosis (LTS) is a type of airway narrowing that is frequently caused by intubation-related trauma. LTS can occur at one or multiple locations in the larynx and/or trachea. This study characterizes airflow dynamics and drug delivery in patients with multilevel stenosis. Two subjects with multilevel stenosis (S1 = glottis + trachea, S2 = glottis + subglottis) and one normal subject were retrospectively selected. Computed tomography scans were used to create subject-specific upper airway models. Computational fluid dynamics modeling was used to simulate airflow at inhalation pressures of 10, 25, and 40 Pa, and orally inhaled drug transport with particle velocities of 1, 5, and 10 m/s, and particle size range of 100 nm-40 µm. Subjects had increased airflow velocity and resistance at stenosis with decreased cross-sectional area (CSA): S1 had the smallest CSA at trachea (0.23 cm2) and resistance = 0.3 Pa·s/mL; S2 had the smallest CSA at glottis (0.44 cm2), and resistance = 0.16 Pa·s/mL. S1 maximal stenotic deposition was 4.15% at trachea; S2 maximal deposition was 2.28% at glottis. Particles of 11-20 µm had the greatest deposition, 13.25% (S1-trachea) and 7.81% (S2-subglottis). Results showed differences in airway resistance and drug delivery between subjects with LTS. Less than 4.2% of orally inhaled particles deposited at stenosis. Particle sizes with most stenotic deposition were 11-20 µm and may not represent typical particle sizes emitted by current-use inhalers.
Collapse
Affiliation(s)
- Raluca E. Gosman
- Duke University School of Medicine, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC 27708 USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
| | - Ryan M. Sicard
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
| | - Seth M. Cohen
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
| | - Dennis O. Frank-Ito
- Duke University School of Medicine, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC 27708 USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708 USA
- Computational Biology & Bioinformatics PhD Program, Duke University, Durham, NC 27708 USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
7
|
Crosby T, Adkins L, McWhorter A, Kunduk M, Dunham M. Computational fluid dynamics model of laryngotracheal stenosis and correlation to pulmonary function measures. Respir Physiol Neurobiol 2023; 312:104037. [PMID: 36842729 DOI: 10.1016/j.resp.2023.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
3D models of airway lumens were created from CT scans of 19 patients with laryngotracheal stenosis. Computational fluid dynamics (CFD) simulations were completed for each, and results were compared to measured peak inspiratory flow rate, grade of lumen constriction, and measures of airway geometry. Results demonstrate flow resistance and shear stress correlate with degree of lumen constriction and absolute cross-sectional area as well as flow rate. Flow recirculation depends on airway constriction but does not vary with flow rate. Resistance and wall shear stress did not correlate well with functional measures. Flow recirculation did differ between subjects with higher functional measures and subjects with lower functional measures. This analysis provides mathematical models to predict airway resistance, wall shear stress, and flow reversal according lumen constriction and inspiratory flow rate. It suggests aerodynamic factors such as flow recirculation play a role in differences in functional performance between patients with similar airway measures.
Collapse
Affiliation(s)
- Tyler Crosby
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Department of Otolaryngology-Head and Neck Surgery, NYU Langone Health, New York, New York.
| | - Lacey Adkins
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA
| | - Andrew McWhorter
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA
| | - Melda Kunduk
- Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA; Louisiana State University Department of Communication Sciences and Disorders, Louisiana State University, 68 Hatcher Hall, Field House Drive, Baton Rouge, LA 70803, USA
| | - Michael Dunham
- Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Children's Hospital, 8200 Constanin Blvd, Floor 3, Baton Rouge, LA 70809, USA
| |
Collapse
|
8
|
Monjezi M, Rismanian M, Kiani A, Abedini A, Jamaati H. Evaluation of the Tracheal Stenosis Effects on Airway Resistance and Work of Breathing Using Computational Fluid Dynamics. TANAFFOS 2023; 22:209-214. [PMID: 38628886 PMCID: PMC11016927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/01/2023] [Indexed: 04/19/2024]
Abstract
Background Bronchoscopy is one of the most accurate procedures to diagnose airway stenosis which is an invasive procedure. However, a quick and noninvasive estimation of the percent area of obstruction (%AO) of the lumen is helpful in decision-making before performing a bronchoscopy procedure. We hypothesized that there is a relationship between %AO and tracheal resistance against fluid flow. Materials and Methods By measuring airway resistance, %AO could be estimated before the procedure. Using computational fluid dynamics (CFD), this study simulates the fluid flow through trachea models with web-liked stenosis using CFD. A cylindrical segment was inserted into the trachea to represent cross-sectional areas corresponding to 20%, 40%, 60%, and 80% AO. The fluid flow and pressure distribution in these models were studied. Our CFD simulations revealed that the tracheal resistance is exponentially increased by %AO. Results The results showed a 130% and 55% increase in lung airway resistance and resistive work of breathing for an 80% AO, respectively. Moreover, a curve-fitted relationship was obtained to estimate %AO based on the measured airway resistance by body plethysmography or forced oscillation technique. Conclusion This pre-estimation is very useful in diagnostic evaluation and treatment planning in patients with tracheal stenosis.
Collapse
Affiliation(s)
- Mojdeh Monjezi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Rismanian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arda Kiani
- Tracheal Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Gosman RE, Sicard RM, Cohen SM, Frank-Ito DO. Comparison of Inhaled Drug Delivery in Patients With One- and Two-level Laryngotracheal Stenosis. Laryngoscope 2023; 133:366-374. [PMID: 35608335 PMCID: PMC10332660 DOI: 10.1002/lary.30212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES/HYPOTHESIS Laryngotracheal stenosis (LTS) is a functionally devastating condition with high respiratory morbidity and mortality. This preliminary study investigates airflow dynamics and stenotic drug delivery in patients with one- and two-level LTS. STUDY DESIGN A Computational Modeling Restropective Cohort Study. METHODS Computed tomography scans from seven LTS patients, five with one-level (three subglottic, two tracheal), and two with two-level (glottis + trachea, glottis + subglottis) were used to reconstruct patient-specific three-dimensional upper airway models. Airflow and orally inhaled drug particle transport were simulated using computational fluid dynamics modeling. Drug particle transport was simulated for 1-20 μm particles released into the mouth at velocities of 0 m/s, 1 m/s, 3 m/s, and 10 m/s for metered dose inhaler (MDI) and 0 m/s for dry powder inhaler (DPI) simulations. Airflow resistance and stenotic drug deposition in the patients' airway models were compared. RESULTS Overall, there was increased airflow resistance at stenotic sites in subjects with two-level versus one-level stenosis (0.136 Pa s/ml vs. 0.069 Pa s/ml averages). Subjects with two-level stenosis had greater particle deposition at sites of stenosis compared to subjects with one-level stenosis (average deposition 2.31% vs. 0.96%). One-level stenosis subjects, as well as one two-level stenosis subject, had the greatest deposition using MDI with a spacer (0 m/s): 2.59% and 4.34%, respectively. The second two-level stenosis subject had the greatest deposition using DPI (3.45%). Maximum deposition across all stenotic subtypes except one-level tracheal stenosis was achieved with particle sizes of 6-10 μm. CONCLUSIONS Our results suggest that patients with two-level LTS may experience a more constricted laryngotracheal airflow profile compared to patients with one-level LTS, which may enhance overall stenotic drug deposition. LEVEL OF EVIDENCE NA Laryngoscope, 133:366-374, 2023.
Collapse
Affiliation(s)
- Raluca E Gosman
- Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, U.S.A
- Department of Head and Neck Surgery and Communication Sciences, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Ryan M Sicard
- Department of Head and Neck Surgery and Communication Sciences, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Seth M Cohen
- Department of Head and Neck Surgery and Communication Sciences, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Dennis O Frank-Ito
- Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, U.S.A
- Department of Head and Neck Surgery and Communication Sciences, Duke University Medical Center, Durham, North Carolina, U.S.A
- Computational Biology and Bioinformatics PhD Program, Duke University, Durham, North Carolina, U.S.A
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, U.S.A
| |
Collapse
|
10
|
Fluid dynamics of the upper airway in pediatric patients with severe laryngomalacia. Phys Eng Sci Med 2022; 45:1083-1091. [PMID: 36326986 DOI: 10.1007/s13246-022-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Laryngomalacia is the top cause of pediatric laryngeal wheeze. We used computational fluid dynamics to study the inspiratory airflow dynamics in severe pediatric laryngomalacia. Computed tomography was performed on the upper airways of two infants, one with severe laryngomalacia and one with normal airway, and 3D models were reconstructed. ANSYS CFD-POST software was used to simulate airflow in these models to compare the volumetric flow rate, flow velocity, pressure, wall shear, and vortex. The volume flow rate in the laryngomalacia model was significantly reduced compared with the control model. Under inspiratory pressures, the peak flow velocity, pressure, and shear force in the control model appeared at the soft palate stenosis, while that in the laryngomalacia model appeared at the supraglottis stenosis. In both models, the maximum flow velocity and shear force increased with decreasing inspiratory pressure, while the minimum pressure decreased with decreasing inspiratory pressure. In the control model, the airflow vortex appeared anteriorly below the posterior section of the soft palate. In the laryngomalacia model, the vortex appeared anteriorly below the posterior section of the soft palate and anteriorly below the vocal folds. Our methodology provides a new mechanistic understanding of pediatric laryngomalacia.
Collapse
|
11
|
Molecular Mechanisms and Physiological Changes behind Benign Tracheal and Subglottic Stenosis in Adults. Int J Mol Sci 2022; 23:ijms23052421. [PMID: 35269565 PMCID: PMC8910114 DOI: 10.3390/ijms23052421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.
Collapse
|
12
|
A systematic analysis of surgical interventions for the airway in the mature unilateral cleft lip nasal deformity: a single case study. Int J Comput Assist Radiol Surg 2022; 17:41-53. [PMID: 34080126 PMCID: PMC8636526 DOI: 10.1007/s11548-021-02396-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Individuals with unilateral cleft lip nasal deformity (uCLND) often require rhinoplasty in adolescence to correct nasal obstruction. The intent of this study is to identify sites of greatest nasal obstruction and evaluate the effects of isolated and combinations of simulated surgical procedures on these sites using computational fluid dynamics (CFD). METHODS Computed tomography imaging of an adolescent subject with uCLND was converted to an anatomically accurate three-dimensional nasal airway model. Initial analysis was performed to identify anatomic sites of obstruction based on CFD computed resistance values. Virtual surgery procedures corresponding to common uCLND surgical interventions were simulated. Resulting airspace models were then analyzed after conducting airflow and heat transfer simulations. RESULTS The preoperative model had 21 obstructed sites with a nasal resistance of 0.075 Pa s/mL. Following simulated surgical procedures with functional interventions alone and in combinations, the three virtual surgery models with most improved nasal airflow were inferior turbinate reduction (ITR) with posterior septoplasty (resistance = 0.054 Pa s/ml, reduction in 14 of 21 obstructed sites), ITR with anterior septoplasty (resistance = 0.058 Pa s/ml, reduction in 8 of 21 obstructed sites), and ITR with both anterior and posterior septoplasty (resistance = 0.052 Pa s/ml, reduction in 17 of 21 obstructed sites). CONCLUSION This study introduces a new technique for analysis of the impact of different simulated surgical interventions on uCLND-induced nasal obstruction. In this subject, simulated septoplasty with ITR on the non-cleft side provided maximal relief of nasal obstruction. The proposed technique can be further studied for possible utility in analyzing potential surgical interventions for optimal relief of nasal obstruction in patients with uCLND.
Collapse
|
13
|
Bhatt NK, Huang VP, Bertelsen C, Gao WZ, Reder LS, Johns MM, O'Dell K. Pulmonary Function Tests May Better Predict Dyspnea-Severity in Patients with Subglottic Stenosis Compared to Clinician-Reported Stenosis. Ann Otol Rhinol Laryngol 2021; 131:791-796. [PMID: 34496642 DOI: 10.1177/00034894211045266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Patients with subglottic stenosis (SGS) present with varied degree of breathing complaints. The dyspnea index (DI) is a 10-question patient-reported outcome measure designed to measure the severity of upper airway obstruction. We set out to determine whether pulmonary function tests or clinician-reported degree of stenosis best predicted DI scores. METHODS Thirty patients with SGS were retrospectively reviewed over a 6-year period. One visit from each patient was included. Data including peak expiratory flow rate (PEFR), body-mass index (BMI), clinician-reported degree of stenosis, and DI scores were reviewed. Multiple linear regression was performed to determine how degree of stenosis and PEFR % predicted the variation in DI score. RESULTS PEFR % better predicted DI scores compared to degree of stenosis (partial correlation -0.32 vs 0.17). After stepwise elimination, PEFR % remained in the regression and was significantly associated with DI scores (F[1, 29] = 9.38, P = .005). BMI did not demonstrate a linear relationship with DI scores and was not included in the regression (r = -.02). The PEFR % unstandardized coefficient was -0.25 (95% CI: -0.42 to -0.08, P = .005). The model predicts that a 4% increase in the PEFR % results in a 1-point decrease in the DI score (95% CI: -1.68 to -0.32). CONCLUSION This study suggests that pulmonary function tests may be a better in-office measure to substantiate the severity of symptoms in patients with SGS.
Collapse
Affiliation(s)
- Neel K Bhatt
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Washington, St Louis, MO, USA
| | - Valerie P Huang
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | | | - William Z Gao
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC, USA
| | - Lindsay S Reder
- Southern California Permanente Medical Group, Kaiser Permanente Baldwin Park, Baldwin Park, CA, USA
| | - Michael M Johns
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Karla O'Dell
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Ali Akbari Ghavimi S, Gehret PM, Aronson MR, Schipani R, Smith KWY, Borek RC, Germiller JA, Jacobs IN, Zur KB, Gottardi R. Drug delivery to the pediatric upper airway. Adv Drug Deliv Rev 2021; 174:168-189. [PMID: 33845038 DOI: 10.1016/j.addr.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
Pediatric upper airway disorders are frequently life-threatening and require precise assessment and intervention. Targeting these pathologies remains a challenge for clinicians due to the high complexity of pediatric upper airway anatomy and numerous potential etiologies; the most common treatments include systemic delivery of high dose steroids and antibiotics or complex and invasive surgeries. Furthermore, the majority of innovative airway management technologies are only designed and tested for adults, limiting their widespread implementation in the pediatric population. Here, we provide a comprehensive review of the most recent challenges of managing common pediatric upper airway disorders, describe the limitations of current clinical treatments, and elaborate on how to circumvent those limitations via local controlled drug delivery. Furthermore, we propose future advancements in the field of drug-eluting technologies to improve pediatric upper airway management outcomes.
Collapse
Affiliation(s)
- Soheila Ali Akbari Ghavimi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul M Gehret
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Aronson
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rossana Schipani
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kyra W Y Smith
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan C Borek
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John A Germiller
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian N Jacobs
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen B Zur
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riccardo Gottardi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Ri.MED Foundation, Palermo, PA 90133, Italy.
| |
Collapse
|
15
|
Frank-Ito DO, Cohen SM. Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis. Otolaryngol Head Neck Surg 2021; 164:829-840. [PMID: 33045904 PMCID: PMC8294408 DOI: 10.1177/0194599820959674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Adjuvant management for laryngotracheal stenosis (LTS) may involve inhaled corticosteroids, but metered dose inhalers are designed for pulmonary drug delivery. Comprehensive analyses of drug particle deposition efficiency for orally inhaled corticosteroids in the stenosis of LTS subjects are lacking. STUDY DESIGN Descriptive research. SETTING Academic medical center. METHODS Anatomically realistic 3-dimensional reconstructions of the upper airway were created from computed tomography images of 4 LTS subjects-2 subglottic stenosis and 2 tracheal stenosis subjects. Computational fluid dynamics modeling was used to simulate airflow and drug particle transport in each airway. Three inhalation pressures were simulated, 10 Pa, 25 Pa, and 40 Pa. Drug particle transport was simulated for 100 to 950 nanoparticles and 1 to 50 micron-particles. Particles were released into the airway to mimic varying inhaler conditions with and without a spacer chamber. RESULTS Based on smallest to largest cross-sectional area ratio, the laryngotracheal stenotic segment shrunk by 57% and 47%, respectively, for subglottic stenosis models and by 53% for both tracheal stenosis models. Airflow resistance at the stenotic segment was lower in subglottic stenosis models than in tracheal stenosis models: 0.001 to 0.011 Pa.s/mL vs 0.024 to 0.082 Pa.s/mL. Drug depositions for micron-particles and nanoparticles at stenosis were 0.06% to 2.48% and 0.10% to 2.60% for subglottic stenosis and tracheal stenosis models, respectively. Particle sizes with highest stenotic deposition were 6 to 20 µm for subglottic stenosis models and 1 to 10 µm for tracheal stenosis models. CONCLUSION This study suggests that at most, 2.60% of inhaled drug particles deposit at the stenosis. Particle size ranges with highest stenotic deposition may not represent typical sizes emitted by inhalers.
Collapse
Affiliation(s)
- Dennis Onyeka Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Computational Biology & Bioinformatics PhD Program, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Seth Morris Cohen
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
16
|
Gunatilaka CC, Schuh A, Higano NS, Woods JC, Bates AJ. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow. Comput Biol Med 2020; 127:104099. [PMID: 33152667 PMCID: PMC7770091 DOI: 10.1016/j.compbiomed.2020.104099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 01/21/2023]
Abstract
RATIONALE Computational fluid dynamics (CFD) simulations of respiratory airflow can quantify clinically useful information that cannot be obtained directly, such as the work of breathing (WOB), resistance to airflow, and pressure loss. However, patient-specific CFD simulations are often based on medical imaging that does not capture airway motion and thus may not represent true physiology, directly affecting those measurements. OBJECTIVES To quantify the variation of respiratory airflow metrics obtained from static models of airway anatomy at several respiratory phases, temporally averaged airway anatomies, and dynamic models that incorporate physiological motion. METHODS Neonatal airway images were acquired during free-breathing using 3D high-resolution MRI and reconstructed at several respiratory phases in two healthy subjects and two with airway disease (tracheomalacia). For each subject, five static (end expiration, peak inspiration, end inspiration, peak expiration, averaged) and one dynamic CFD simulations were performed. WOB, airway resistance, and pressure loss across the trachea were obtained for each static simulation and compared with the dynamic simulation results. RESULTS Large differences were found in the airflow variables between the static simulations at various respiratory phases and the dynamic simulation. Depending on the static airway model used, WOB, resistance, and pressure loss varied up to 237%, 200%, and 94% compared to the dynamic simulation respectively. CONCLUSIONS Changes in tracheal size and shape throughout the breathing cycle directly affect respiratory airflow dynamics and breathing effort. Simulations incorporating realistic airway wall dynamics most closely represent airway physiology; if limited to static simulations, the airway geometry must be obtained during the respiratory phase of interest for a given pathology.
Collapse
Affiliation(s)
- Chamindu C Gunatilaka
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Physics, University of Cincinnati, Cincinnati, USA
| | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Physics, University of Cincinnati, Cincinnati, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Alister J Bates
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| |
Collapse
|
17
|
Islam MS, Gu Y, Farkas A, Paul G, Saha SC. Helium-Oxygen Mixture Model for Particle Transport in CT-Based Upper Airways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103574. [PMID: 32443715 PMCID: PMC7277378 DOI: 10.3390/ijerph17103574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023]
Abstract
The knowledge of respiratory particle transport in the extra-thoracic pathways is essential for the estimation of lung health-risk and optimization of targeted drug delivery. The published literature reports that a significant fraction of the inhaled aerosol particles are deposited in the upper airways, and available inhalers can deliver only a small amount of drug particles to the deeper airways. To improve the targeted drug delivery efficiency to the lungs, it is important to reduce the drug particle deposition in the upper airways. This study aims to minimize the unwanted aerosol particle deposition in the upper airways by employing a gas mixture model for the aerosol particle transport within the upper airways. A helium–oxygen (heliox) mixture (80% helium and 20% oxygen) model is developed for the airflow and particle transport as the heliox mixture is less dense than air. The mouth–throat and upper airway geometry are extracted from CT-scan images. Finite volume based ANSYS Fluent (19.2) solver is used to simulate the airflow and particle transport in the upper airways. Tecplot software and MATLAB code are employed for the airflow and particle post-processing. The simulation results show that turbulence intensity for heliox breathing is lower than in the case of air-breathing. The less turbulent heliox breathing eventually reduces the deposition efficiency (DE) at the upper airways than the air-breathing. The present study, along with additional patient-specific investigation, could improve the understanding of particle transport in upper airways, which may also increase the efficiency of aerosol drug delivery.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Arpad Farkas
- Centre for Energy Research, Konkoly-Thege M. Street 29-33, 1121 Budapest, Hungary;
| | - Gunther Paul
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia;
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
- Correspondence:
| |
Collapse
|
18
|
Poynot WJ, Gonthier KA, Dunham ME, Crosby TW. Classification of tracheal stenosis in children based on computational aerodynamics. J Biomech 2020; 104:109752. [PMID: 32224051 DOI: 10.1016/j.jbiomech.2020.109752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
Tracheal stenosis is a health condition in which local narrowing of the upper trachea can cause breathing difficulties and increased incidence of infection, among other symptoms. Occurring most commonly due to intubation of infants, tracheal stenosis often requires corrective surgery. It is challenging to determine the most effective surgical strategy for a given patient as current clinical methods used to assess tracheal stenosis are simplistic and subjective, and are not rigorously based on aerodynamic considerations. This paper summarizes a non-invasive approach based on computational fluid dynamics (CFD) and medical imaging to establish relationships between trachea anatomy and inspiration performance. Though patient-specific CFD analysis has gained recent popularity, an objective of this study is to computationally formulate dimensionless analytical correlations between anatomy and performance that are applicable to any member of a class of patients and that can be interpreted within the context of the Myer-Cotton stenotic airway classification system. These correlations can provide aerodynamics-based insight for the development of more robust stenosis evaluation methods and may allow for time-efficient assessment of corrective surgical strategies.
Collapse
Affiliation(s)
- William J Poynot
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Keith A Gonthier
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Michael E Dunham
- Department of Otolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tyler W Crosby
- Department of Otolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Xu X, Wu J, Weng W, Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol 2020; 19:1679-1695. [PMID: 32026145 DOI: 10.1007/s10237-020-01299-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084, People's Republic of China.,Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, 100084, China
| | - Jialin Wu
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084, People's Republic of China.,Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, 100084, China
| | - Wenguo Weng
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084, People's Republic of China. .,Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, 100084, China.
| | - Ming Fu
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, 320601, Anhui Province, China
| |
Collapse
|
20
|
A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020380. [PMID: 31935991 PMCID: PMC7014067 DOI: 10.3390/ijerph17020380] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
The understanding of complex inhalation and transport processes of pollutant particles through the human respiratory system is important for investigations into dosimetry and respiratory health effects in various settings, such as environmental or occupational health. The studies over the last few decades for micro- and nanoparticle transport and deposition have advanced the understanding of drug-aerosol impacts in the mouth-throat and the upper airways. However, most of the Lagrangian and Eulerian studies have utilized the non-realistic symmetric anatomical model for airflow and particle deposition predictions. Recent improvements to visualization techniques using high-resolution computed tomography (CT) data and the resultant development of three dimensional (3-D) anatomical models support the realistic representation of lung geometry. Yet, the selection of different modelling approaches to analyze the transitional flow behavior and the use of different inlet and outlet conditions provide a dissimilar prediction of particle deposition in the human lung. Moreover, incorporation of relevant physical and appropriate boundary conditions are important factors to consider for the more accurate prediction of transitional flow and particle transport in human lung. This review critically appraises currently available literature on airflow and particle transport mechanism in the lungs, as well as numerical simulations with the aim to explore processes involved. Numerical studies found that both the Euler–Lagrange (E-L) and Euler–Euler methods do not influence nanoparticle (particle diameter ≤50 nm) deposition patterns at a flow rate ≤25 L/min. Furthermore, numerical studies demonstrated that turbulence dispersion does not significantly affect nanoparticle deposition patterns. This critical review aims to develop the field and increase the state-of-the-art in human lung modelling.
Collapse
|
21
|
Impact of fundoplication for gastroesophageal reflux in the outcome of benign tracheal stenosis. J Thorac Cardiovasc Surg 2019; 158:1698-1706. [DOI: 10.1016/j.jtcvs.2019.07.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022]
|
22
|
Computational Analysis of the Mature Unilateral Cleft Lip Nasal Deformity on Nasal Patency. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2244. [PMID: 31333968 PMCID: PMC6571342 DOI: 10.1097/gox.0000000000002244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 01/15/2023]
Abstract
Background Nasal airway obstruction (NAO) due to nasal anatomic deformities is known to be more common among cleft patients than the general population, yet information is lacking regarding severity and variability of cleft-associated nasal obstruction relative to other conditions causing NAO. This preliminary study compares differences in NAO experienced by unilateral cleft lip nasal deformity (uCLND) subjects with noncleft subjects experiencing NAO. Methods Computational modeling techniques based on patient-specific computed tomography images were used to quantify the nasal airway anatomy and airflow dynamics in 21 subjects: 5 healthy normal subjects; 8 noncleft NAO subjects; and 8 uCLND subjects. Outcomes reported include Nasal Obstruction Symptom Evaluation (NOSE) scores, cross-sectional area, and nasal resistance. Results uCLND subjects had significantly larger cross-sectional area differences between the left and right nasal cavities at multiple cross sections compared with normal and NAO subjects. Median and interquartile range (IQR) NOSE scores between NAO and uCLND were 75 (IQR = 22.5) and 67.5 (IQR = 30), respectively. Airflow partition difference between both cavities were: median = 9.4%, IQR = 10.9% (normal); median = 31.9%, IQR = 25.0% (NAO); and median = 29.9%, IQR = 44.1% (uCLND). Median nasal resistance difference between left and right nasal cavities were 0.01 pa.s/ml (IQR = 0.03 pa.s/ml) for normal, 0.09 pa.s/ml (IQR = 0.16 pa.s/ml) for NAO and 0.08 pa.s/ml (IQR = 0.25 pa.s/ml) for uCLND subjects. Conclusions uCLND subjects demonstrated significant asymmetry between both sides of the nasal cavity. Furthermore, there exists substantial disproportionality in flow partition difference and resistance difference between cleft and noncleft sides among uCLND subjects, suggesting that both sides may be dysfunctional.
Collapse
|
23
|
Mason EC, McGhee S, Zhao K, Chiang T, Matrka L. The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology. Ann Otol Rhinol Laryngol 2019; 128:453-459. [PMID: 30688077 DOI: 10.1177/0003489419826601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Laryngotracheal stenosis and obstruction can be challenging to manage. Traditional assessment tools are limited in clinical correlation. Three-dimensional computational fluid dynamics (CFD) modeling is a novel technique used to analyze airflow dynamics. The objective of this study was to apply CFD to the human upper airway to explore its utility. METHODS CFD models were constructed on an adult patient with an obstructive tracheal lesion before and after intervention and on an adult with normal airway anatomy, using computed tomographic imaging obtained retrospectively. Key airflow metrics were calculated. RESULTS CFD provided detailed airway geometry. The normal airway had a peak flow velocity of 3.12 m/s, wall shear stress of 0.30 Pa, and resistance of 0.02 Pa/mL/s. The pathologic patient showed an elevated peak flow velocity of 12.25 m/s, wall shear stress of 3.90 Pa, and resistance of 0.22 Pa/mL/s. This was reflected clinically with dyspnea, stridor, and obstructive impairment via pulmonary function testing. Following treatment, peak flow velocity corrected to 3.95 m/s, wall shear stress to 0.72Pa, and resistance to 0.01 Pa/mL/s. Cross-sectional area improved to 190 mm2 from a minimum of 53 mm2 at the same segment. Stridor and dyspnea resolved. CONCLUSIONS CFD metrics were calculated on the normal, diseased, and posttreatment upper airway. Variations were reflected in clinical symptoms. These methods could model surgical outcomes and anticipate disease severity.
Collapse
Affiliation(s)
- Eric C Mason
- 1 Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Samuel McGhee
- 2 Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Kai Zhao
- 1 Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA.,2 Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Tendy Chiang
- 1 Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA.,3 Department of Otolaryngology-Head & Neck Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Matrka
- 1 Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|