1
|
Pang J, Xiong Z, Zhang K, Li Y. PM 2.5 affected ciliary beat frequency of axonemes via the cyclic AMP-dependent protein kinase a pathway. Front Public Health 2025; 13:1529215. [PMID: 40352850 PMCID: PMC12062082 DOI: 10.3389/fpubh.2025.1529215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Long-term inhalation of fine particulate matter (PM2.5) has been linked to the onset of various lung diseases. The mucociliary clearance system, acts as the primary host defense mechanism in the airways, with ciliary beat frequency (CBF) being a key parameter for assessing its functionality. The primary aim of this study was to demonstrate the impact of PM2.5 on CBF and to investigate the potential mechanisms by which PM2.5 induced changes in CBF through airway axonemes. Airway axonemes were extracted from bovine ciliated epithelium and treated with different concentrations of PM2.5 in vitro for 10 min and 1 h to simulate short-term and prolonged exposures. Additionally, the pathway was examined using PKA activator (cAMP) and PKA inhibitor (PKI) on ciliary axonemes. The results revealed that PM2.5 stimulated CBF in airway axonemes via the cAMP-PKA pathway. Low concentrations and short-term exposure to PM2.5 stimulated CBF elevation, however, high concentration and prolonged exposure to PM2.5 might damage respiratory cilia, thereby increasing the risk of respiratory diseases.
Collapse
Affiliation(s)
- Jinyan Pang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhiqin Xiong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Kexin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Marunaka Y. Physiological roles of chloride ions in bodily and cellular functions. J Physiol Sci 2023; 73:31. [PMID: 37968609 PMCID: PMC10717538 DOI: 10.1186/s12576-023-00889-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Physiological roles of Cl-, a major anion in the body, are not well known compared with those of cations. This review article introduces: (1) roles of Cl- in bodily and cellular functions; (2) the range of cytosolic Cl- concentration ([Cl-]c); (3) whether [Cl-]c could change with cell volume change under an isosmotic condition; (4) whether [Cl-]c could change under conditions where multiple Cl- transporters and channels contribute to Cl- influx and efflux in an isosmotic state; (5) whether the change in [Cl-]c could be large enough to act as signals; (6) effects of Cl- on cytoskeletal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological activity; (7) roles of cytosolic Cl- in cell proliferation; (8) Cl--regulatory mechanisms of ciliary motility; (9) roles of Cl- in sweet/umami taste receptors; (10) Cl--regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl- in regulation of epithelial Na+ transport; (12) relationship between roles of Cl- and H+ in body functions.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-Cho, Nishinokyo, Nakagyo-Ku, Kyoto, 604-8472, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
3
|
Saito D, Suzuki C, Tanaka S, Hosogi S, Kawaguchi K, Asano S, Okamoto S, Yasuda M, Hirano S, Inui T, Marunaka Y, Nakahari T. Ambroxol-enhanced ciliary beating via voltage-gated Ca 2+ channels in mouse airway ciliated cells. Eur J Pharmacol 2023; 941:175496. [PMID: 36642128 DOI: 10.1016/j.ejphar.2023.175496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Ambroxol (ABX) facilitates the mucociliary clearance (MC) by enhancing ciliary beating in airways. In this study, we focused on airway ciliary beating enhanced by ABX. However, little is known about the ABX-stimulated Ca2+ signalling activating airway ciliary beating. Airway ciliated cells isolated from mice lungs were observed by a high-speed video microscope, and the activities of beating cilia were assessed by CBF (ciliary beat frequency) and CBD (ciliary bend distance, an index of amplitude). ABX (10 μM) enhanced the CBF and CBD by 30%, and the enhancement was inhibited by nifedipine (20 μM, a L-type voltage-gated Ca2+ channel (CaV) inhibitor), or a Ca2+-free solution (approximately 50%). Pre-treatment with BAPTA-AM (10 μM, a chelator of intracellular Ca2+) abolished ABX-stimulated increases in CBF, CBD and [Ca2+]i. Thus, ABX increases [Ca2+]i (intracellular Ca2+ concentration) by stimulating Ca2+ release from the internal stores and nifedipine-sensitive Ca2+ entry. A previous study demonstrated the expression of CaV1.2 in airway cilia. ABX enhanced CBF, CBD and [Ca2+]i even in a high extracellular K+ concentration (155.5 mM), suggesting that it activates CaV1.2 except by depolarization. These enhancements were inhibited by nifedipine. In conclusion, ABX, which increases [Ca2+]i by stimulating Ca2+ release from internal stores and Ca2+ entry through CaV1.2s, enhanced CBF and CBD in airway ciliated cells. ABX is a novel agonist that modulates CaV1.2 of airway beating cilia to enhance CBF and CBD.
Collapse
Affiliation(s)
- Daichi Saito
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Chihiro Suzuki
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Saori Tanaka
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shohta Okamoto
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan.
| |
Collapse
|
4
|
Saitoh D, Kawaguchi K, Asano S, Inui T, Marunaka Y, Nakahari T. Enhancement of airway ciliary beating mediated via voltage-gated Ca 2+ channels/α7-nicotinic receptors in mice. Pflugers Arch 2022; 474:1091-1106. [PMID: 35819489 DOI: 10.1007/s00424-022-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Acetylcholine (ACh), which activates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs), enhances airway ciliary beating by increasing the intracellular Ca2+ concentration ([Ca2+]i). The mechanisms enhancing airway ciliary beating by nAChRs have remained largely unknown, although those by mAChRs are well understood. In this study, we focused on the effects of α7-nAChRs and voltage-gated Ca2+ channels (CaVs) on the airway ciliary beating. The activities of ciliary beating were assessed by frequency (CBF, ciliary beat frequency) and amplitude (CBD, ciliary bend distance) measured by high-speed video microscopy. ACh enhanced CBF and CBD by 25% mediated by an [Ca2+]i increase stimulated by mAChRs and α7-nAChRs (a subunit of nAChR) in airway ciliary cells of mice. Experiments using PNU282987 (an agonist of α7-nAChR) and MLA (an inhibitor of α7-nAChR) revealed that CBF and CBD enhanced by α7-nAChR are approximately 50% of those enhanced by ACh. CBF, CBD, and [Ca2+]i enhanced by α7-nAChRs were inhibited by nifedipine, suggesting activation of CaVs by α7-nAChRs. Experiments using a high K+ solution with/without nifedipine (155.5 mM K+) showed that the activation of CaVs enhances CBF and CBD via an [Ca2+]i increase. Immunofluorescence and immunoblotting studies demonstrated that Cav1.2 and α7-nAChR are expressed in airway cilia. Moreover, IL-13 stimulated MLA-sensitive increases in CBF and CBD in airway ciliary cells, suggesting an autocrine regulation of ciliary beating by CaV1.2/α7-nAChR/ACh. In conclusion, a novel Ca2+ signalling pathway in airway cilia, CaV1.2/α7-nAChR, enhances CBF and CBD and activates mucociliary clearance maintaining healthy airways.
Collapse
Affiliation(s)
- Daichi Saitoh
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kotoku Kawaguchi
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan.
| |
Collapse
|
5
|
Yasuda M, Inui TA, Hirano S, Asano S, Okazaki T, Inui T, Marunaka Y, Nakahari T. Intracellular Cl - Regulation of Ciliary Beating in Ciliated Human Nasal Epithelial Cells: Frequency and Distance of Ciliary Beating Observed by High-Speed Video Microscopy. Int J Mol Sci 2020; 21:4052. [PMID: 32517062 PMCID: PMC7312665 DOI: 10.3390/ijms21114052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Small inhaled particles, which are entrapped by the mucous layer that is maintained by mucous secretion via mucin exocytosis and fluid secretion, are removed from the nasal cavity by beating cilia. The functional activities of beating cilia are assessed by their frequency and the amplitude. Nasal ciliary beating is controlled by intracellular ions (Ca2+, H+ and Cl-), and is enhanced by a decreased concentration of intracellular Cl- ([Cl-]i) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which increases the ciliary beat amplitude. A novel method to measure both ciliary beat frequency (CBF) and ciliary beat distance (CBD, an index of ciliary beat amplitude) in cHNECs has been developed using high-speed video microscopy, which revealed that a decrease in [Cl-]i increased CBD, but not CBF, and an increase in [Cl-]i decreased both CBD and CBF. Thus, [Cl-]i inhibits ciliary beating in cHNECs, suggesting that axonemal structures controlling CBD and CBF may have Cl- sensors and be regulated by [Cl-]i. These observations indicate that the activation of Cl- secretion stimulates ciliary beating (increased CBD) mediated via a decrease in [Cl-]i in cHNECs. Thus, [Cl-]i is critical for controlling ciliary beating in cHNECs. This review introduces the concept of Cl- regulation of ciliary beating in cHNECs.
Collapse
Affiliation(s)
- Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.-a.I.); (S.H.)
| | - Taka-aki Inui
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.-a.I.); (S.H.)
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.-a.I.); (S.H.)
| | - Shinji Asano
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.A.); (T.I.); (Y.M.)
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Tomonori Okazaki
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.A.); (T.I.); (Y.M.)
- Saisei Mirai Clinics, Moriguchi 570-0012, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.A.); (T.I.); (Y.M.)
| |
Collapse
|