1
|
Wu H, Sun W, Zhu F, Jiang Y, Huang S, Goloran J, Xue S. Straw addition increases enzyme activities and microbial carbon metabolism activities in bauxite residue. J Environ Sci (China) 2024; 135:332-344. [PMID: 37778808 DOI: 10.1016/j.jes.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation. Straw is considered to be effective to increase microbial diversity and drive the development of the microbial community, but its effect on microbial carbon metabolism has not been illustrated. The present study evaluated the effects of phosphogypsum (PG), straw (SF) and phosphogypsum plus straw (PGSF) on physicochemical properties, enzyme activities, and microbial carbon metabolism activities in bauxite residue. After 180 days incubation, PG, SF and PGSF treatment significantly reduced the residue pH from 10.85 to 8.64, 9.39 and 8.06, respectively. Compared to CK treatment, SF treatment significantly increased the content of total organic carbon (TOC) and organic carbon fractions (DOC, MBC, EOC, and POC). In addition, straw addition significantly increased glucosidase, cellulose, urease, and alkaline phosphatase by 7.2-9.1 times, 5.8-7.1 times, 11.1-12.5 times, and 1.1-2.2 times, respectively. The Biolog results showed that straw addition significantly increased microbial metabolic activity (AWCD) and diversity in bauxite residue. Redundancy analysis indicated total nitrogen (TN) and carbon fractions (POC, MBC and DOC) were the most important environmental factors affecting microbial metabolic activity and diversity in bauxite residue. These findings provided us with a biogeochemical perspective to reveal soil formation in bauxite residue and suggested that nutrient supplement and regulation of salinity-alkalinity benefit the establishment of microbial communities and functions in bauxite residue.
Collapse
Affiliation(s)
- Hao Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shiwei Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Johnvie Goloran
- School of Environment and Science, Griffith University, Brisbane, QLD 4072, Australia
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Hao C, Du P, Ren J, Hu L, Zhang Z. Halophyte Elymus dahuricus colonization regulates microbial community succession by mediating saline-alkaline and biogenic organic matter in bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167140. [PMID: 37722424 DOI: 10.1016/j.scitotenv.2023.167140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.
Collapse
Affiliation(s)
- Chongkai Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Lijuan Hu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zongpeng Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
3
|
Zhu F, Zhang X, Guo X, Yang X, Xue S. Root architectures differentiate the composition of organic carbon in bauxite residue during natural vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163588. [PMID: 37105477 DOI: 10.1016/j.scitotenv.2023.163588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
Understanding plant root architectures induced changes in organic carbon accumulation and conversion is critical to predicting carbon cycling and screening appropriate plant species for ecological restoration on bauxite residue disposal areas. According to the ecological investigation of a weathered bauxite residue disposal area, three plants with different root architectures including Artemisia lavandulaefolia (A. lavandulaefolia), moss, and Zanthoxylum simulans (Z. simulans) were selected to investigate the rhizosphere effects on the composition and structure of organic carbon in bauxite residue. The physic-chemical properties, the contents and structure of different organic carbon fractions, and microbial communities of bauxite residue from rhizosphere and non-rhizosphere were analyzed. Plant growth decreased the saline-alkalinity, increased the contents of total organic carbon, particulate organic carbon and dissolved organic carbon, whilst enhancing the enzymatic activities of bauxite residue. Meanwhile, the rhizosphere effects had significant effects on the accumulation and stabilization of organic carbon in bauxite residue. A. lavandulaefolia had the strongest rhizosphere effects on the composition and structure of total organic carbon and dissolved organic carbon, whilst moss was more effective on the accumulation of particulate organic carbon in bauxite residue. Plant growth and root architecture changed the abundance of specific functional microorganisms and the complexity of microbial co-occurrence networks, thus elevating organic carbon levels in bauxite residue. During natural vegetation encroachment, rhizosphere exciting effects of the salt-tolerated plants could change the composition and structure of organic carbon fractions due to the comprehensive effectiveness of the improvement of physic-chemical properties and microbial communities. The findings improve our understanding of the responses of sequestration and stabilization of organic carbon pools to ecological restoration on bauxite residue disposal areas.
Collapse
Affiliation(s)
- Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, PR China
| | - Xianchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xuyao Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, PR China.
| |
Collapse
|
4
|
Wu Y, Zhang Y, Li Q, Jiang J, Jiang Y, Xue S. Rapid conversion of alkaline bauxite residue through co-pyrolysis with waste biomass and its revegetation potential. J Environ Sci (China) 2023; 127:102-113. [PMID: 36522045 DOI: 10.1016/j.jes.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
The extreme alkalinity of bauxite residue (BR) leads to difficulty with its reuse. Alkaline leachate and dust generation during the stacking process can pollute surrounding soil, air and water. In this work, co-pyrolysis of bauxite residue and sawdust was applied to rapidly produce a soil-like matrix that met the conditions for plant growth as demonstrated by ryegrass pot experiments. The present study aimed to characterize the detailed changes in physicochemical, mineral weathering, and microbial communities of the pyrolyzed BR with different ratios of saw dust after plant colonization for 2 months. With increasing sawdust addition during co-pyrolysis, the pH of BR decreased from 11.21 to 8.16, the fraction of macro-aggregates 0.25-2 mm in the water-stable agglomerates increased by 29.3%, and the organic carbon concentration increased from 12.5 to 320 mg/kg, whilst facilitating the degree of humification, which were all beneficial to its revegetation performance. The backscattered electron-scanning electron microscope-energy-dispersive X-ray spectrometry (BSE-SEM-EDS) results confirmed the occurrence of sodalite and calcite weathering on aggregate surfaces, and X-ray photoelectron spectroscopy (XPS) results of surface Al and Si compounds identified that some weathering products were clay minerals such as kaolinite. Furthermore, bacterial community composition and structure shifted towards typical soil taxonomic groups. These results demonstrate soil development of treated BR at an early stage. The technique is a combination of alkalinity regulation and agglomerate construction, which accelerates soil formation of BR, thus proving highly promising for potential application as an artificial soil substitute.
Collapse
Affiliation(s)
- Yujun Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yufei Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qihou Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
5
|
Evaluation of Biological Characteristics of Soil as Indicator for Sustainable Rehabilitation of a Post-Bauxite-Mining Land. DIVERSITY 2022. [DOI: 10.3390/d14121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a study of the microbial abundance in post-bauxite-mining land soil from Zece Hotare, Bihor county, Romania. The soil samples were collected from 12 soil variants, in the year 2020, after 15 years of long-term restoration. Some chemical parameters and bacterial numbers of six groups of microorganisms were determined in the restored mining land, and these characteristics were compared with those of the soil from a beech forest situated in an adjacent area unaffected by bauxite exploitation. On the basis of the total number of microorganisms belonging to each group studied, the bacterial potential of the soil quality was assessed, calculating the bacterial soil quality index (BSQI), while the Shannon diversity index and the Jaccard distance were applied to show the level of bacterial diversity. The characteristics of the studied chemical and microbiological parameters determined in the beech adjacent area were very similar to those observed in the high-level plateau, low-level plateau, and Black locust areas, indicating similar soil conditions; therefore, the ecological reconstruction 15 years ago, had a very favorable impact on restoration in some affected areas.
Collapse
|
6
|
Dong M, Hu S, Lv S, Rong F, Wang X, Gao X, Xu Z, Xu Y, Liu K, Liu A. Recovery of microbial community in strongly alkaline bauxite residues after amending biomass residue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113281. [PMID: 35124422 DOI: 10.1016/j.ecoenv.2022.113281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to characterize the effects of cornstalk biomass amendments on microbial communities in bauxite residues (BRs) by phylogenetic analysis. Improvements in soil geochemical, physical, and biological properties were assessed to identify the major factors controlling microbial community development in BRs. After one year of incubation, the salinity and structure of the amended BRs had gradually improved, with pH dropping from 11.39 to 9.89, the exchangeable sodium percentage (ESP) dropping from 86.3% to 35.2%, and the mean weight diameter (MWD) rising from 0.12 mm to 0.38 mm. Further analysis of community level physiological profiles (CLPP) showed that the microbial utilization of different carbohydrates had shifted significantly, in addition to increases in the diversity index H' (0.7-7.34), U (2.16-3.14), and the average well color development (0.059-1.08). Over the one-year outside incubation, the dominant fungal phyla in the BRs had shifted gradually from Ascomycota (85.64%) to Ascomycota (52.07%) and Basidiomycota (35.53%), while the dominant bacterial phyla had shifted from Actinobacteria (38.47%), Proteobacteria (21.39%), and Gemmatimonadetes (12.72%) to Actinobacteria (14.87%), Proteobacteria (23.53%), and Acidobacteria (14.37%). Despite these shifts, microbial diversity remained lower in the amended BRs than in the natural soil. Further redundancy analysis indicated that pH was the major factor driving shifts in the bacterial community, while aggregates were the major factor driving shifts in the fungal community. This study demonstrated that amendment with cornstalk biomass shifted the microbial community in the BRs from halophilic groups to acidogenic groups by improving the soil environmental conditions.
Collapse
Affiliation(s)
- Mengyang Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Shuxiang Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Shiquan Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Fangxu Rong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xin Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinyu Gao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Ziwen Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuzhi Xu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Kai Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Aiju Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
7
|
Macías-Pérez LA, Levard C, Barakat M, Angeletti B, Borschneck D, Poizat L, Achouak W, Auffan M. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127470. [PMID: 34687997 DOI: 10.1016/j.jhazmat.2021.127470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.
Collapse
Affiliation(s)
- Luis Alberto Macías-Pérez
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Clément Levard
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Bernard Angeletti
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Daniel Borschneck
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | | | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Mélanie Auffan
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
8
|
He Z, Zhou J, Tang J, Li C, Jiang J, Chen W, Zhu F, Xue S. Accelerated alkalinity regulation and long-term dry-wet aging durability for bauxite residue remediated with biomass pyrolysis. J Environ Sci (China) 2022; 111:220-228. [PMID: 34949351 DOI: 10.1016/j.jes.2021.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/14/2023]
Abstract
Biomass fermentation provides a potential route toward the ecological disposal for the bauxite residue (BR) with high alkalinity issues. However, how to accelerate the remediation of the alkaline problem with a long-term durability is still a big challenge. Herein, we investigated the acceleration of the decomposition of straw toward organic acid species via a pyrolysis strategy as well as the pH stability during long-term dry-wet aging for the treated BR. The pH of pyrolytic BR at 300 °C is stabilized at around 8.90 after 70 days' dry-wet aging. During the aging, the main Ca-contained alkaline minerals of calcite and cancrinite are dissolved and the content of exchangeable Na+ is reduced. This pyrolysis process can decompose straw quickly and produce more organic matters that are easily degraded to fulvic and humic acid as evidenced by 3D fluorescence spectrum analysis. Compared to the fermentation with straw under natural conditions, the alkalinity regulation of BR after pyrolysis is featured with shorter period and lower pH as well as long-term pH stability. Therefore, the synergistic pyrolysis of BR with straw provides an alternative method to address the alkaline issues, which is conducive to promoting the soil formation of BR.
Collapse
Affiliation(s)
- Zhexiang He
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jingju Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jianwei Tang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|