1
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
2
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Ko T, Choi R, Issa K, Gupta R, Llinas E, Morey L, Finlay JB, Goldstein BJ. Polycomb repressive complex 2 regulates basal cell fate during adult olfactory neurogenesis. Stem Cell Reports 2023; 18:2283-2296. [PMID: 37832538 PMCID: PMC10679661 DOI: 10.1016/j.stemcr.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Adult neurogenesis occurs in the mammalian olfactory epithelium to maintain populations of neurons that are vulnerable to injury yet essential for olfaction. Multipotent olfactory basal stem cells are activated by damage, although mechanisms regulating lineage decisions are not understood. Using mouse lesion models, we focused on defining the role of Polycomb repressive complexes (PRCs) in olfactory neurogenesis. PRC2 has a well-established role in developing tissues, orchestrating transcriptional programs via chromatin modification. PRC2 proteins are expressed in olfactory globose basal cells (GBCs) and nascent neurons. Conditional PRC2 loss perturbs lesion-induced neuron production, accompanied by altered histone modifications and misexpression of lineage-specific transcription factors in GBCs. De-repression of Sox9 in PRC2-mutant GBCs is accompanied by increased Bowman's gland production, defining an unrecognized role for PRC2 in regulating gland versus neuron cell fate. Our findings support a model for PRC2-dependent mechanisms promoting sensory neuronal differentiation in an adult neurogenic niche.
Collapse
Affiliation(s)
- Tiffany Ko
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rhea Choi
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Khalil Issa
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward Llinas
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John B Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Goldstein
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Finlay JB, Abi Hachem R, Jang DW, Osazuwa-Peters N, Goldstein BJ. Deconstructing Olfactory Epithelium Developmental Pathways in Olfactory Neuroblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:980-990. [PMID: 37377616 PMCID: PMC10243222 DOI: 10.1158/2767-9764.crc-23-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Olfactory neuroblastoma is a rare tumor arising from the olfactory cleft region of the nasal cavity. Because of the low incidence of this tumor, as well as an absence of established cell lines and murine models, understanding the mechanisms driving olfactory neuroblastoma pathobiology has been challenging. Here, we sought to apply advances from research on the human olfactory epithelial neurogenic niche, along with new biocomputational approaches, to better understand the cellular and molecular factors in low- and high-grade olfactory neuroblastoma and how specific transcriptomic markers may predict prognosis. We analyzed a total of 19 olfactory neuroblastoma samples with available bulk RNA-sequencing and survival data, along with 10 samples from normal olfactory epithelium. A bulk RNA-sequencing deconvolution model identified a significant increase in globose basal cell (GBC) and CD8 T-cell identities in high-grade tumors (GBC from ∼0% to 8%, CD8 T cell from 0.7% to 2.2%), and significant decreases in mature neuronal, Bowman's gland, and olfactory ensheathing programs, in high-grade tumors (mature neuronal from 3.7% to ∼0%, Bowman's gland from 18.6% to 10.5%, olfactory ensheathing from 3.4% to 1.1%). Trajectory analysis identified potential regulatory pathways in proliferative olfactory neuroblastoma cells, including PRC2, which was validated by immunofluorescence staining. Survival analysis guided by gene expression in bulk RNA-sequencing data identified favorable prognostic markers such as SOX9, S100B, and PLP1 expression. Significance Our analyses provide a basis for additional research on olfactory neuroblastoma management, as well as identification of potential new prognostic markers.
Collapse
Affiliation(s)
- John B. Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
| | - Nosayaba Osazuwa-Peters
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
| | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University, School of Medicine, Durham, North Carolina
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
5
|
Qi KY, Shen M, Yang K, Yan YS, Wu J, Wang YP, Yin CH. Investigation of an inherited PCGF2: p.Pro65Leu mutation causing Turnpenny-Fry syndrome. Am J Transl Res 2022; 14:5591-5597. [PMID: 36105049 PMCID: PMC9452349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Turnpenny-Fry syndrome (TPFS) has recently been defined as an uncommon monogenic disease and is characterized by global developmental delay (GDD), intellectualdisability (ID), facial dysmorphology, and skeletal abnormality. PCGF2 is the only known causative gene for TPFS, which is a component of polycomb repressive complex 1 (PRC1). PRC1 is a multi-protein complex controlling the knockdown of gene expression. METHODS The present study included the clinical evaluation of a 2.5-year-old boy with GDD and ID using cerebral MRI and the genetic testing with whole-exome sequencing. Additionally, the in silico molecular dynamic (MD) simulation was carried out on the identified variant. RESULTS A recurrent missense variant, namely PCGF2: c.194C > T (p.Pro65Leu), was identified and suggested to be inherited from a mosaic father based on Sanger sequencing validation. MD results suggested a deleterious effect on the intramolecular structural flexibility and stability of PCGF2 protein by this variant. CONCLUSION Our results indicated that PCGF2: p.Pro65Leu might be a hotspot for GDD and highlighted the effect of this variant on protein function.
Collapse
Affiliation(s)
- Ke-Yan Qi
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100026, China
| | - Ming Shen
- Research Center for Translational Medicine Laboratory, Medical Innovation Research Division of Chinese PLA General HospitalBeijing 100000, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100026, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100026, China
| | - Jue Wu
- Research Center for Translational Medicine Laboratory, Medical Innovation Research Division of Chinese PLA General HospitalBeijing 100000, China
| | - Yi-Peng Wang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100026, China
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100026, China
| |
Collapse
|
6
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
7
|
Choi R, Kurtenbach S, Goldstein BJ. Loss of BMI1 in mature olfactory sensory neurons leads to increased olfactory basal cell proliferation. Int Forum Allergy Rhinol 2019; 9:993-999. [PMID: 31251849 DOI: 10.1002/alr.22366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Damage to olfactory sensory neurons (OSNs), situated within the neuroepithelium of the olfactory cleft, may be associated with anosmia. Although their direct contact with the nasal airspace make OSNs vulnerable to injury and death, multiple mechanisms maintain epithelium integrity and olfactory function. We hypothesized that BMI1, a polycomb protein found to be enriched in OSNs, may function in neuroprotection. Here, we explored BMI1 function in a mouse model. METHODS Utilizing a mouse genetic approach to delete Bmi1 selectively in mature OSNs, we investigated changes in OE homeostasis by performing immunohistochemical, biochemical, and functional assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunostaining, and electro-olfactograms were used to compare gene expression, cell composition, and olfactory function in OSN-specific BMI1 knockout mice (n = 3 to 5) and controls. Chromatin studies were also performed to identify protein-DNA interactions between BMI1 and its target genes (n = 3). RESULTS OSN-specific BMI1 knockout led to increased neuron death and basal cell activation. Chromatin studies suggested a mechanism of increased neurodegeneration due to de-repression of a pro-apoptosis gene, p19ARF. Despite the increased turnover, we found that olfactory neuroepithelium thickness and olfactory function remained intact. Our studies also revealed the presence of additional polycomb group proteins that may compensate for the loss of BMI1 in mature OSNs. CONCLUSION The olfactory neuroepithelium employs multiple mechanisms to maintain epithelial homeostasis. Our findings provide evidence that in a mouse model of BMI1 deletion, the overall integrity and function of the olfactory neuroepithelium are not compromised, despite increased neuronal turnover, reflecting a remarkable reparative capacity to sustain a critical sensory system.
Collapse
Affiliation(s)
- Rhea Choi
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL.,Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL
| | - Sarah Kurtenbach
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Bradley J Goldstein
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL.,Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL.,Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|