1
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
3
|
Morton LM, Lee OW, Karyadi DM, Bogdanova TI, Stewart C, Hartley SW, Breeze CE, Schonfeld SJ, Cahoon EK, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Dai J, Krznaric M, Yeager M, Hutchinson A, Hicks BD, Dagnall CL, Steinberg MK, Jones K, Jain K, Jordan B, Machiela MJ, Dawson ET, Vij V, Gastier-Foster JM, Bowen J, Mabuchi K, Hatch M, Berrington de Gonzalez A, Getz G, Tronko MD, Thomas GA, Chanock SJ. Genomic characterization of cervical lymph node metastases in papillary thyroid carcinoma following the Chornobyl accident. Nat Commun 2024; 15:5053. [PMID: 38871684 PMCID: PMC11176192 DOI: 10.1038/s41467-024-49292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Childhood radioactive iodine exposure from the Chornobyl accident increased papillary thyroid carcinoma (PTC) risk. While cervical lymph node metastases (cLNM) are well-recognized in pediatric PTC, the PTC metastatic process and potential radiation association are poorly understood. Here, we analyze cLNM occurrence among 428 PTC with genomic landscape analyses and known drivers (131I-exposed = 349, unexposed = 79; mean age = 27.9 years). We show that cLNM are more frequent in PTC with fusion (55%) versus mutation (30%) drivers, although the proportion varies by specific driver gene (RET-fusion = 71%, BRAF-mutation = 38%, RAS-mutation = 5%). cLNM frequency is not associated with other characteristics, including radiation dose. cLNM molecular profiling (N = 47) demonstrates 100% driver concordance with matched primary PTCs and highly concordant mutational spectra. Transcriptome analysis reveals 17 differentially expressed genes, particularly in the HOXC cluster and BRINP3; the strongest differentially expressed microRNA also is near HOXC10. Our findings underscore the critical role of driver alterations and provide promising candidates for elucidating the biological underpinnings of PTC cLNM.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Karyadi
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tetiana I Bogdanova
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen W Hartley
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Breeze
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir Drozdovitch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergii Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Chepurny
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla Yu Zurnadzhy
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Marko Krznaric
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mia K Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Komal Jain
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Ben Jordan
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric T Dawson
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Nvidia Corporation, Santa Clara, CA, USA
| | - Vibha Vij
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay Bowen
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mykola D Tronko
- Department of Fundamental and Applied Problems of Endocrinology, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Gerry A Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhu HN, Song DL, Zhang SN, Zheng ZJ, Chen XY, Jin X. Progress in long non-coding RNAs as prognostic factors of papillary thyroid carcinoma. Pathol Res Pract 2024; 256:155230. [PMID: 38461693 DOI: 10.1016/j.prp.2024.155230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Papillary thyroid carcinoma (PTC) is generally recognized as a slow-growing tumor. However, a small subset of patients may still experience relapse or metastasis shortly after therapy, leading to a poor prognosis and raising concerns about excessive medical treatment. One major challenge lies in the inadequacy of effective biomarkers for accurate risk stratification. Long non-coding RNAs (lncRNAs), which are closely related to malignant characteristics and poor prognosis, play a significant role in the genesis and development of PTC through various pathways. The objective of this review is to provide a comprehensive summary of the biological functions of lncRNAs in PTC, identify prognosis-relevant lncRNAs, and explore their potential mechanisms in drug resistance to BRAF kinase inhibitors, tumor dedifferentiation, and lymph node metastasis. By doing so, this review aims to offer valuable references for both basic research and the prediction of PTC prognosis.
Collapse
Affiliation(s)
- Hao-Nan Zhu
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Dong-Liang Song
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Si-Nan Zhang
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zhao-Jie Zheng
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xing-Yu Chen
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xin Jin
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
5
|
Karajovic J, Kovacevic B, Uzelac B, Stefik D, Jovanovic B, Ristic P, Cerovic S, Supic G. Association of HOTAIR, MIR155HG, TERC, miR-155, -196a2, and -146a Genes Polymorphisms with Papillary Thyroid Cancer Susceptibility and Prognosis. Cancers (Basel) 2024; 16:485. [PMID: 38339237 PMCID: PMC10854783 DOI: 10.3390/cancers16030485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 02/12/2024] Open
Abstract
Polymorphisms in long non-coding RNA and microRNA genes may play a significant role in the susceptibility and progression of papillary thyroid carcinoma (PTC). The current study investigates the polymorphisms HOTAIR rs920778, MIR155HG rs1893650, TERC rs10936599, miR-155 rs767649, miR-196a2 rs11614913 and miR-146a rs2910164 in 102 PTC patients and 106 age- and sex-matched controls of the Caucasian Serbian population, using real-time PCR. We observed differences in genotype distributions of the HOTAIR rs920778 (p = 0.016) and MIR155HG rs1893650 (p = 0.0002) polymorphisms between PTC patients and controls. HOTAIR rs920778 was associated with increased PTC susceptibility (adjusted OR = 1.497, p = 0.021), with the TT variant genotype increasing the risk compared to the CC genotype (OR = 2.466, p = 0.012) and C allele carriers (CC + CT) (OR = 1.585, p = 0.006). The HOTAIR rs920778 TT genotype was associated with lymph node metastasis (p = 0.022), tumor recurrence (p = 0.016), and progression-free survival (p = 0.010) compared to C allele carriers. Multivariate Cox regression revealed that ATA risk (HR = 14.210, p = 0.000004) and HOTAIR rs920778 (HR = 2.811, p = 0.010) emerged as independent prognostic factors in PTC. A novel polymorphism, MIR155HG rs1893650, was negatively correlated with susceptibility to PTC, with TC heterozygotes exerting a protective effect (OR = 0.268, p = 0.0001). These results suggest that the polymorphisms HOTAIR rs920778 and MIR155HG rs1893650 could be potential prognostic and risk biomarkers in papillary thyroid carcinomas.
Collapse
Affiliation(s)
- Jelena Karajovic
- Clinic for Endocrinology, Military Medical Academy, 11000 Belgrade, Serbia; (J.K.); (P.R.)
| | - Bozidar Kovacevic
- Institute for Pathology and Forensic Medicine, Military Medical Academy, 11000 Belgrade, Serbia; (B.K.); (B.J.); (S.C.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Bojana Uzelac
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (B.U.); (D.S.)
| | - Debora Stefik
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (B.U.); (D.S.)
| | - Bojana Jovanovic
- Institute for Pathology and Forensic Medicine, Military Medical Academy, 11000 Belgrade, Serbia; (B.K.); (B.J.); (S.C.)
| | - Petar Ristic
- Clinic for Endocrinology, Military Medical Academy, 11000 Belgrade, Serbia; (J.K.); (P.R.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Snezana Cerovic
- Institute for Pathology and Forensic Medicine, Military Medical Academy, 11000 Belgrade, Serbia; (B.K.); (B.J.); (S.C.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gordana Supic
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (B.U.); (D.S.)
| |
Collapse
|
6
|
Kuo FC, Wang YT, Liu CH, Li YF, Lu CH, Su SC, Liu JS, Li PF, Huang CL, Ho LJ, Lin CM, Lee CH. LncRNA HOTAIR impairs the prognosis of papillary thyroid cancer via regulating cellular malignancy and epigenetically suppressing DLX1. Cancer Cell Int 2022; 22:396. [PMID: 36494673 PMCID: PMC9733112 DOI: 10.1186/s12935-022-02817-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Papillary thyroid cancer (PTC) is the most common endocrine malignancy with a fast-growing incidence in recent decades. HOTAIR as a long non-coding RNA has been shown to be highly expressed in papillary thyroid cancer tissues with only a limited understanding of its functional roles and downstream regulatory mechanisms in papillary thyroid cancer cells. METHODS We applied three thyroid cancer cell lines (MDA-T32, MDA-T41 and K1) to investigate the phenotypic influence after gain or loss of HOTAIR. The Cancer Genome Atlas (TCGA) database were utilised to select candidate genes possibly regulated by HOTAIR with validation in the cellular system and immunohistochemical (IHC) staining of PTC tissues. RESULTS We observed HOTAIR was highly expressed in MDA-T32 cells but presents significantly decreased levels in MDA-T41 and K1 cells. HOTAIR knockdown in MDA-T32 cells significantly suppressed proliferation, colony formation, migration with cell cycle retardation at G1 phase. On the contrary, HOTAIR overexpression in MDA-T41 cells dramatically enhanced proliferation, colony formation, migration with cell cycle driven toward S and G2/M phases. Similar phenotypic effects were also observed as overexpressing HOTAIR in K1 cells. To explore novel HOTAIR downstream mechanisms, we analyzed TCGA transcriptome in PTC tissues and found DLX1 negatively correlated to HOTAIR, and its lower expression associated with reduced progression free survival. We further validated DLX1 gene was epigenetically suppressed by HOTAIR via performing chromatin immunoprecipitation. Moreover, IHC staining shows a significantly stepwise decrease of DLX1 protein from normal thyroid tissues to stage III PTC tissues. CONCLUSIONS Our study pointed out that HOTAIR is a key regulator of cellular malignancy and its epigenetic suppression on DLX1 serves as a novel biomarker to evaluate the PTC disease progression.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ting Wang
- grid.260565.20000 0004 0634 0356Department and Graduate Institute of Life Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hsin Liu
- grid.260565.20000 0004 0634 0356Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Feng Li
- grid.260565.20000 0004 0634 0356Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Chiang Su
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Fei Li
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Luen Huang
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ju Ho
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ming Lin
- grid.260565.20000 0004 0634 0356Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Department and Graduate Institute of Life Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
8
|
Peng S, Chen L, Yuan Z, Duan S. Suppression of MIR31HG affects the functional properties of thyroid cancer cells depending on the miR-761/MAPK1 axis. BMC Endocr Disord 2022; 22:107. [PMID: 35443670 PMCID: PMC9022350 DOI: 10.1186/s12902-022-00962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Thyroid cancer is the most prevalent endocrine malignancy. Long non-coding RNA (lncRNA) MIR31HG is abnormally expressed in thyroid cancer tissues. However, the precise, critical role of MIR31HG in thyroid cancer development remains unclear. METHODS MIR31HG, microRNA (miR)-761 and mitogen-activated protein kinase 1 (MAPK1) were quantified by quantitative real-time PCR (qRT-PCR) and immunoblotting. Cell viability, proliferation, apoptosis, invasion and migration abilities were evaluated by MTS, 5-Ethynyl-2'-Deoxyuridine (EdU), flow cytometry, transwell and wound-healing assays, respectively. Dual-luciferase reporter assays were used to validate the direct relationship between miR-761 and MIR31HG or MAPK1. RESULTS MIR31HG was overexpressed in human thyroid cancer, and its overexpression predicted poor prognosis. Suppression of MIR31HG impeded cell proliferation, invasion and migration, as well as promoted cell apoptosis in vitro, and diminished the growth of xenograft tumors in vivo. Mechanistically, MIR31HG targeted and regulated miR-761. Moreover, miR-761 was identified as a molecular mediator of MIR30HG function in regulating thyroid cancer cell behaviors. MAPK1 was established as a direct and functional target of miR-761 and MAPK1 knockdown phenocopied miR-761 overexpression in impacting thyroid cancer cell behaviors. Furthermore, MIR31HG modulated MAPK1 expression by competitively binding to miR-761 via the shared binding sequence. CONCLUSION Our findings demonstrate that MIR31HG targets miR-761 to regulate the functional behaviors of thyroid cancer cells by upregulating MAPK1, highlighting a strong rationale for developing MIR31HG as a novel therapeutic target against thyroid cancer.
Collapse
Affiliation(s)
- Shuwang Peng
- Department of Gastrointestinal and Thyroid and Vascular Surgery, The First Hospital of Hunan University of Chinese Medicine, Ward 22, 13th floor, Zhihe Building, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410000, Hunan, Province, China.
| | - Luyang Chen
- Department of Ultrasound Imaging, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhengtai Yuan
- Department of Gastrointestinal and Thyroid and Vascular Surgery, The First Hospital of Hunan University of Chinese Medicine, Ward 22, 13th floor, Zhihe Building, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410000, Hunan, Province, China
| | - Shanshan Duan
- Department of Gastrointestinal and Thyroid and Vascular Surgery, The First Hospital of Hunan University of Chinese Medicine, Ward 22, 13th floor, Zhihe Building, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410000, Hunan, Province, China
| |
Collapse
|