1
|
He C, He H, Chang J, Chen B, Ma H, Booth MJ. Polarisation optics for biomedical and clinical applications: a review. LIGHT, SCIENCE & APPLICATIONS 2021; 10:194. [PMID: 34552045 PMCID: PMC8458371 DOI: 10.1038/s41377-021-00639-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse biomedically relevant information have been developed and harnessed. In this review, we focus mainly on summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the Stokes-Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.
Collapse
Affiliation(s)
- Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Honghui He
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Jintao Chang
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Binguo Chen
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Hui Ma
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
2
|
Chue-Sang J, Gonzalez M, Pierre A, Laughrey M, Saytashev I, Novikova T, Ramella-Roman JC. Optical phantoms for biomedical polarimetry: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 30851015 PMCID: PMC6975228 DOI: 10.1117/1.jbo.24.3.030901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/29/2019] [Indexed: 05/04/2023]
Abstract
Calibration, quantification, and standardization of the polarimetric instrumentation, as well as interpretation and understanding of the obtained data, require the development and use of well-calibrated phantoms and standards. We reviewed the status of tissue phantoms for a variety of applications in polarimetry; more than 500 papers are considered. We divided the phantoms into five groups according to their origin (biological/nonbiological) and fundamental polarimetric properties of retardation, depolarization, and diattenuation. We found that, while biological media are generally depolarizing, retarding, and diattenuating, only one of all the phantoms reviewed incorporated all these properties, and few considered at least combined retardation and depolarization. Samples derived from biological tissue, such as tendon and muscle, remain extremely popular to quickly ascertain a polarimetric system, but do not provide quantifiable results aside from relative direction of their principal optical axis. Microspheres suspensions are the most utilized phantoms for depolarization, and combined with theoretical models can offer true quantification of depolarization or degree of polarization. There is a real paucity of birefringent phantoms despite the retardance being one of the most interesting parameters measurable with polarization techniques. Therefore, future work should be directed at generating truly reliable and repeatable phantoms for this metric determination. Diattenuating phantoms are rare and application-specific. Given that diattenuation is considered to be low in most biological tissues, the lack of such phantoms is seen as less problematic. The heterogeneity of the phantoms reviewed points to a critical need for standardization in this field. Ultimately, all research groups involved in polarimetric studies and instruments development would benefit from sharing a limited set of standardized polarimetric phantoms, as is done earlier in the round robin investigations in ellipsometry.
Collapse
Affiliation(s)
- Joseph Chue-Sang
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Mariacarla Gonzalez
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Angie Pierre
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Megan Laughrey
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Ilyas Saytashev
- Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States
| | - Tatiana Novikova
- LPICM Laboratoire de Physique des Interfaces et Couches Minces, CNRS, Ecole Polytechnique, Palaiseau, France
| | - Jessica C. Ramella-Roman
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
- Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States
| |
Collapse
|
3
|
Qi J, He H, Lin J, Dong Y, Chen D, Ma H, Elson DS. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination. JOURNAL OF BIOPHOTONICS 2018; 11:e201700139. [PMID: 29131523 DOI: 10.1002/jbio.201700139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/09/2017] [Indexed: 05/02/2023]
Abstract
Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
| | - Jianyu Lin
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yang Dong
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
| | - Dongsheng Chen
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
- Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
4
|
Qi J, He C, Elson DS. Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:4933-4946. [PMID: 29188092 PMCID: PMC5695942 DOI: 10.1364/boe.8.004933] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
Tissue polarimetric imaging measures Mueller matrices of tissues or Stokes vectors of the emergent light from tissues (normally using incidence with a fixed polarization state) over a field of view, and has demonstrated utility in a number of surgical and diagnostic applications. Here we introduce a compact complete Stokes polarimetric imager that can work for multiple wavelength bands with a frame-rate suitable for real-time applications. The imager was validated with standard polarizing components, and then employed as a polarization state analyzer of a Mueller imaging polarimeter and a standalone Stokes imaging polarimeter respectively to image the process of dehydration of bovine tendon tissue. The results obtained in this work suggested that the polarization properties of the samples rich of collagen fibres can change with the degree of dehydration, and therefore, dehydration of the samples prepared for polarimetric imaging (e.g. polarimetric microscopy) should be carefully controlled.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Chao He
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Daniel S. Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
5
|
Chue-Sang J, Bai Y, Stoff S, Straton D, Ramaswamy S, Ramella-Roman JC. Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71109. [PMID: 26934019 DOI: 10.1117/1.jbo.21.7.071109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/28/2016] [Indexed: 05/20/2023]
Abstract
Mueller matrix polarimetry and polarization-sensitive optical coherence tomography (PS-OCT) are two emerging techniques utilized in the assessment of tissue anisotropy. While PS-OCT can provide cross-sectional images of local tissue birefringence through its polarimetric sensitivity, Mueller matrix polarimetry can be used to measure bulk polarimetric properties such as depolarization, diattenuation, and retardance. To this day true quantification of PS-OCT data can be elusive, partly due to the reliance on inverse models for the characterization of tissue birefringence and the influence of instrumentation noise. Similarly for Mueller matrix polarimetry, calculation of retardance or depolarization may be influenced by tissue heterogeneities that could be monitored with PS-OCT. Here, we propose an instrument that combines Mueller matrix polarimetry and PS-OCT. Through the co-registration of the two systems, we aim at achieving a better understanding of both modalities.
Collapse
Affiliation(s)
- Joseph Chue-Sang
- Florida International University, Department of Biomedical Engineering, 10555 West Flagler Street, EC 2600, Miami, Florida 33174, United States
| | - Yuqiang Bai
- Florida International University, Department of Biomedical Engineering, 10555 West Flagler Street, EC 2600, Miami, Florida 33174, United States
| | - Susan Stoff
- Florida International University, Department of Biomedical Engineering, 10555 West Flagler Street, EC 2600, Miami, Florida 33174, United States
| | - David Straton
- Florida International University, Department of Biomedical Engineering, 10555 West Flagler Street, EC 2600, Miami, Florida 33174, United States
| | - Sharan Ramaswamy
- Florida International University, Department of Biomedical Engineering, 10555 West Flagler Street, EC 2600, Miami, Florida 33174, United States
| | - Jessica C Ramella-Roman
- Florida International University, Department of Biomedical Engineering, 10555 West Flagler Street, EC 2600, Miami, Florida 33174, United StatesbFlorida International University, Herbert Wertheim College of Medicine, 11200 SW 8th Street, AHC2, Miami, Flori
| |
Collapse
|
6
|
Clancy NT, Arya S, Qi J, Stoyanov D, Hanna GB, Elson DS. Polarised stereo endoscope and narrowband detection for minimal access surgery. BIOMEDICAL OPTICS EXPRESS 2014; 5:4108-17. [PMID: 25574424 PMCID: PMC4285591 DOI: 10.1364/boe.5.004108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 05/03/2023]
Abstract
Polarisation imaging has the potential to provide enhanced contrast based on variations in the optical properties, such as scattering or birefringence, of the tissue of interest. Examining the signal at different wavebands in the visible spectrum also allows interrogation of different depths and structures. A stereo endoscope has been adapted to allow snapshot acquisition of orthogonal linear polarisation images to generate difference of linear polarisation images. These images are acquired in three narrow bands using a triple-bandpass filter and pair of colour cameras. The first in vivo results, acquired during a surgical procedure on a porcine subject, are presented that show wavelength dependent variations in vessel visibility and an increase in contrast under polarised detection.
Collapse
Affiliation(s)
- Neil T. Clancy
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, SW7 2AZ,
UK
- Department of Surgery and Cancer, Imperial College London, SW7 2AZ,
UK
| | - Shobhit Arya
- Department of Surgery and Cancer, Imperial College London, SW7 2AZ,
UK
| | - Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, SW7 2AZ,
UK
- Department of Surgery and Cancer, Imperial College London, SW7 2AZ,
UK
| | - Danail Stoyanov
- Centre for Medical Image Computing, Department of Computer Science, University College London, WC1E 6BT,
UK
| | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, SW7 2AZ,
UK
| | - Daniel S. Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, SW7 2AZ,
UK
- Department of Surgery and Cancer, Imperial College London, SW7 2AZ,
UK
| |
Collapse
|