1
|
Rong Y, Zhu M, Wang N, Zhang F, Liu T. Photodynamic therapy with a novel photosensitizer inhibits DSS-induced ulcerative colitis in rats via the NF-κB signaling pathway. Front Pharmacol 2025; 15:1539363. [PMID: 39845801 PMCID: PMC11750845 DOI: 10.3389/fphar.2024.1539363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory bowel disease characterized by inflammation and ulceration of the digestive tract. Methods Photodynamic therapy (PDT) with a novel photosensitizer LD4 was used to treat UC rat models to explore the therapeutic effect and mechanism of LD4-PDT on UC. 16S ribosomal RNA was used to detect the composition of Gut microbiota. Results Our findings indicate that LD4-PDT could protect the integrity of the colonic mucosa, alleviate the inflammatory response and promote the healing of colonic mucosa. Mechanism studies demonstrated that LD4-PDT could inhibit the NF-κB signaling pathway, downregulated the expression of the inflammatory factors' tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and myeloperoxidase (MPO), increased the contents of glutathione (GSH) and superoxide dismutase (SOD) and decreased the content of malondialdehyde (MDA). Additionally, analysis of gut microbiota revealed that LD4-PDT treatment could decrease the abundance of the Proteobacteria phylum in fecal samples, while no significant differences were observed in the Firmicutes, Bacteroidetes, or Actinobacteria phyla among the three groups using 16S rRNA analysis. Discussion In summary, our data suggested that LD4-PDT could inhibit DSS-induced UC in rats via the NF-κB signaling pathway, indicating its potential as a novel photosensitizer for the treatment of UC.
Collapse
Affiliation(s)
- Yumei Rong
- The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Minghui Zhu
- The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Nan Wang
- The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Feiyu Zhang
- The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Yin X, Fang Z, Fang Y, Zhu L, Pang J, Liu T, Zhao Z, Zhao J. Antimicrobial Photodynamic Therapy Involving a Novel Photosensitizer Combined With an Antibiotic in the Treatment of Rabbit Tibial Osteomyelitis Caused by Drug-Resistant Bacteria. Front Microbiol 2022; 13:876166. [PMID: 35531297 PMCID: PMC9073078 DOI: 10.3389/fmicb.2022.876166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Osteomyelitis is deep tissue inflammation caused by bacterial infection. If such an infection persists, it can lead to dissolution and necrosis of the bone tissue. As a result of the extensive use of antibiotics, drug-resistant bacteria are an increasingly common cause of osteomyelitis, limiting the treatment options available to surgeons. Photodynamic antibacterial chemotherapy has attracted increasing attention as a potential alternative treatment. Its advantages are a broad antibacterial spectrum, lack of drug resistance, and lack of toxic side effects. In this study, we explored the impact of the new photosensitizer LD4 in photodynamic antimicrobial chemotherapy (PACT), both alone and in combination with an antibiotic, on osteomyelitis. A rabbit tibial osteomyelitis model was employed and microbiological, histological, and radiological studies were performed. New Zealand white rabbits (n = 36) were randomly divided into a control group, antibiotic group, PACT group and PACT + antibiotic group for treatment. In microbiological analysis, a reduction in bacterial numbers of more than 99.9% was recorded in the PACT group and the PACT + antibiotic group 5 weeks after treatment (p < 0.01). In histological analysis, repair of the damaged bone tissue was observed in the PACT group, and bone repair in the PACT + antibiotic group was even more significant. In radiological analysis, the X-ray Norden score showed that the severity of bone tissue defects or destruction followed the pattern: PACT + antibiotic group < PACT group < antibiotic group < control group.
Collapse
Affiliation(s)
- Xiujuan Yin
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Ziyuan Fang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Yan Fang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Lin Zhu
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Jinwen Pang
- School of Clinical Medicine, Hebei University, Baoding, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhanjuan Zhao
- School of Basic Medicine, Hebei University, Baoding, China
| | - Jianxi Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
3
|
Rong Y, Hong G, Zhu N, Liu Y, Jiang Y, Liu T. Photodynamic Therapy of Novel Photosensitizer Ameliorates TNBS-Induced Ulcerative Colitis via Inhibition of AOC 1. Front Pharmacol 2021; 12:746725. [PMID: 34744725 PMCID: PMC8566348 DOI: 10.3389/fphar.2021.746725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC), a chronic, nonspecific inflammatory bowel disease characterized by continuous and diffuse inflammatory changes in the colonic mucosa, requires novel treatment method. Photodynamic therapy (PDT), as a promising physico-chemical treatment method, were used to treat UC rats’ model with novel photosensitizer LD4 in this paper, the treatment effect and mechanism was investigated. LD4-PDT could improve the survival rate of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC model rats, decrease expression of interleukin (IL)-6, IL-1, tumor necrosis factor (TNF)-α, malondialdehyde (MDA), myeloperoxidase (MPO) and increase the expression of glutathione (GSH) and superoxide oxidase (SOD), while protecting the integrity of the intestinal epithelium. LD4-PDT treatment could rebuild the intestinal microflora composition and reprogram the colonic protein profiles in TNBS-induced rats to almost the normal state. Proteomics analysis based upon TNBS-induced UC model rats revealed that Amine oxidase copper-containing 1 (AOC1) was a potential target of LD4-PDT. Novel photosensitizer agent LD4-PDT represents an efficient treatment method for UC, and AOC1 may be a promising target.
Collapse
Affiliation(s)
- Yumei Rong
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Na Zhu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yong Jiang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Morton CA, Szeimies RM, Basset-Seguin N, Calzavara-Pinton P, Gilaberte Y, Haedersdal M, Hofbauer GFL, Hunger RE, Karrer S, Piaserico S, Ulrich C, Wennberg AM, Braathen LR. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 1: treatment delivery and established indications - actinic keratoses, Bowen's disease and basal cell carcinomas. J Eur Acad Dermatol Venereol 2020; 33:2225-2238. [PMID: 31779042 DOI: 10.1111/jdv.16017] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
Abstract
Topical photodynamic therapy (PDT) is a widely approved therapy for actinic keratoses, Bowen's disease (squamous cell carcinoma in situ), superficial and certain thin basal cell carcinomas. Recurrence rates when standard treatment protocols are used are typically equivalent to existing therapies, although inferior to surgery for nodular basal cell carcinoma. PDT can be used both as lesional and field therapies and has the potential to delay/reduce the development of new lesions. A protocol using daylight to treat actinic keratoses is widely practised, with conventional PDT using a red light after typically a 3-h period of occlusion employed for other superficial skin cancer indications as well as for actinic keratoses when daylight therapy is not feasible. PDT is a well-tolerated therapy although discomfort associated with conventional protocol may require pain-reduction measures. PDT using daylight is associated with no or minimal pain and preferred by patient. There is an emerging literature on enhancing conventional PDT protocols or combined PDT with another treatment to increase response rates. This guideline, published over two parts, considers all current approved and emerging indications for the use of topical PDT in dermatology, prepared by the PDT subgroup of the European Dermatology Forum guidelines committee. It presents consensual expert recommendations reflecting current published evidence.
Collapse
Affiliation(s)
- C A Morton
- Department of Dermatology, Stirling Community Hospital, Stirling, UK
| | - R-M Szeimies
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany.,Department of Dermatology & Allergology, Klinikum Vest GmbH, Recklinghausen, Germany
| | - N Basset-Seguin
- Department of Dermatology, Hôpital Saint Louis, Paris, France
| | | | - Y Gilaberte
- Department of Dermatology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - M Haedersdal
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - G F L Hofbauer
- Department of Dermatology, Zurich University Hospital, Zürich, Switzerland
| | - R E Hunger
- Department of Dermatology Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - S Karrer
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - S Piaserico
- Unit of Dermatology, Department of Medicine, University of Padova, Padova, Italy
| | - C Ulrich
- Skin Cancer Centre, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - A-M Wennberg
- Department of Dermatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
5
|
Fonda-Pascual P, Moreno-Arrones OM, Alegre-Sanchez A, Saceda-Corralo D, Buendia-Castaño D, Pindado-Ortega C, Fernandez-Gonzalez P, Velazquez-Kennedy K, Calvo-Sánchez MI, Harto-Castaño A, Perez-Garcia B, Bagazgoitia L, Vaño-Galvan S, Espada J, Jaen-Olasolo P. In situ production of ROS in the skin by photodynamic therapy as a powerful tool in clinical dermatology. Methods 2016; 109:190-202. [PMID: 27422482 DOI: 10.1016/j.ymeth.2016.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality of photochemotherapy based on the accumulation of a photosensitizer in target cells and subsequent irradiation of the tissue with light of adequate wavelength promoting reactive oxygen species (ROS) formation and cell death. PDT is used in several medical specialties as an organ-specific therapy for different entities. In this review we focus on the current dermatological procedure of PDT. In the most widely used PDT protocol in dermatology, ROS production occurs by accumulation of the endogenous photosensitizer protoporphyrin IX after treatment with the metabolic precursors 5-methylaminolevulinic acid (MAL) or 5-aminolevulinic acid (ALA). To date, current approved dermatological indications of PDT include actinic keratoses (AK), basal cell carcinoma (BCC) and in situ squamous cell carcinoma (SCC) also known as Bowen disease (BD). With regards to AKs, PDT can also treat the cancerization field carrying an oncogenic risk. In addition, an increasing number of pathologies, such as other skin cancers, infectious, inflammatory or pilosebaceous diseases are being considered as potentially treatable entities with PDT. Besides the known therapeutic properties of PDT, there is a modality used for skin rejuvenation and aesthetic purposes defined as photodynamic photorejuvenation. This technique enables the remodelling of collagen, which in turn prevents and treats photoaging stygmata. Finally we explore a new potential treatment field for PDT determined by the activation of follicular bulge stem cells caused by in situ ROS formation.
Collapse
Affiliation(s)
- Pablo Fonda-Pascual
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Oscar M Moreno-Arrones
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Adrian Alegre-Sanchez
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - David Saceda-Corralo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Kyra Velazquez-Kennedy
- Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María I Calvo-Sánchez
- Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | - Lorea Bagazgoitia
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sergio Vaño-Galvan
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jesus Espada
- Laboratorio de Bionanotecnolgía, Universidad Bernardo ÓHiggins, Santiago, Chile.
| | - Pedro Jaen-Olasolo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
6
|
Novak B, Peteja M, Brueck T, Luebbert H. Potency of different red light sources in photodynamic induction of cell death in a squamous cell carcinoma cell line. Photodiagnosis Photodyn Ther 2016; 14:128-30. [DOI: 10.1016/j.pdpdt.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 11/24/2022]
|
7
|
Morton CA, Szeimies RM, Braathen LR. Update on topical photodynamic therapy for skin cancer. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-6-26-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Topical photodynamic therapy has become an established therapy option for superficial non-melanoma skin cancers with a substantial evidence base. In this update the increased choice in photosensitizers and light sources are reviewed as well as novel protocols to move beyond lesional treatment and address field therapy. Daylight PDT is emerging as an alternative to conventional office/hospital-based PDT that offers the advantage of much reduced pain. Although most studies have assessed efficacy of PDT in immune-competent patients, there is accumulating evidence for topical PDT being considered an option to assist in reducing the skin cancer burden in organ transplant recipients. The fluorescence associated with photosensitizer application can help delineate lesions prior to full treatment illumination and offers a useful adjunct to treatment in patients where diagnostic uncertainty or poor lesion outline complicates clinical care. PDT may also offer significant benefit in delaying/preventing new cancer development and combined with its recognized photo-rejuvenating effects, is emerging as an effective therapy capable of clearing certain superficial skin cancers, potentially preventing new lesions as well as facilitating photo-rejuvenating effects in treated areas.
Collapse
|
8
|
Maisch T, Eichner A, Späth A, Gollmer A, König B, Regensburger J, Bäumler W. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS One 2014; 9:e111792. [PMID: 25469700 PMCID: PMC4254278 DOI: 10.1371/journal.pone.0111792] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/01/2014] [Indexed: 01/27/2023] Open
Abstract
Photodynamic inactivation of bacteria (PIB) proves to be an additional method to kill pathogenic bacteria. PIB requires photosensitizer molecules that effectively generate reactive oxygen species like singlet oxygen when exposed to visible light. To allow a broad application in medicine, photosensitizers should be safe when applied in humans. Substances like vitamin B2, which are most likely safe, are known to produce singlet oxygen upon irradiation. In the present study, we added positive charges to flavin derivatives to enable attachment of these molecules to the negatively charged surface of bacteria. Two of the synthesized flavin derivatives showed a high quantum yield of singlet oxygen of approximately 75%. Multidrug resistant bacteria like MRSA (Methicillin resistant Staphylococcus aureus), EHEC (enterohemorrhagic Escherichia coli), Pseudomonas aeruginosa, and Acinetobacter baumannii were incubated with these flavin derivatives in vitro and were subsequently irradiated with visible light for seconds only. Singlet oxygen production in bacteria was proved by detecting its luminescence at 1270 nm. After irradiation, the number of viable bacteria decreased up to 6 log10 steps depending on the concentration of the flavin derivatives and the light dosimetry. The bactericidal effect of PIB was independent of the bacterial type and the corresponding antibiotic resistance pattern. In contrast, the photosensitizer concentration and light parameters used for bacteria killing did not affect cell viability of human keratinocytes (therapeutic window). Multiresistant bacteria can be safely and effectively killed by a combination of modified vitamin B2 molecules, oxygen and visible light, whereas normal skin cells survive. Further work will include these new photosensitizers for topical application to decolonize bacteria from skin and mucosa.
Collapse
Affiliation(s)
- Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Anja Eichner
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| | - Andreas Späth
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Anita Gollmer
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | | | - Wolfgang Bäumler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Abstract
We review new developments in recent years in photodynamic therapy. Since 2009 two new photosensitizers, a self-adhesive 5-aminolevulinic acid (ALA) patch and a nanoemulsion formulation of 5-aminolevulinic acid have been approved for the treatment of actinic keratoses. Pretreatment with ablative fractional lasers enhances penetration of the photosensitizer and enables intensified PDT in acral lesions and in field-cancerized skin. Several clinical trials have demonstrated the skin-rejuvenating effects of photodynamic therapy, while the underlying mechanisms of action have been clarified. The efficacy of photodynamic therapy has been shown in the treatment and prophylaxis of actinic keratoses in organ transplant recipients at high risk for developing skin cancer. We also summarize the results of available studies on daylight-mediated photodynamic therapy.
Collapse
Affiliation(s)
- E Kohl
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | |
Collapse
|
10
|
Penjweini R, Loew HG, Breit P, Kratky KW. Optimizing the antitumor selectivity of PVP-Hypericin re A549 cancer cells and HLF normal cells through pulsed blue light. Photodiagnosis Photodyn Ther 2013; 10:591-9. [PMID: 24284116 DOI: 10.1016/j.pdpdt.2013.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/16/2013] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
|
11
|
Karrer S, Kohl E, Feise K, Hiepe-Wegener D, Lischner S, Philipp-Dormston W, Podda M, Prager W, Walker T, Szeimies RM. Photodynamic therapy for skin rejuvenation: review and summary of the literature--results of a consensus conference of an expert group for aesthetic photodynamic therapy. J Dtsch Dermatol Ges 2012. [PMID: 23190505 DOI: 10.1111/j.1610-0387.2012.08046.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skin rejuvenating effects of photodynamic therapy (PDT) for photoaged skin has been well-documented in several clinical trials. Different photosensitizers (5-aminolevulinic acid, methyl aminolevulinate) and diverse light sources (light-emitting diodes, lasers, intense pulsed light) have been used with promising results. An improvement of lentigines, skin roughness, fine lines and sallow complexion has been achieved with PDT. These clinically evident effects are at least in part due to histologically proven increase of collagen and decrease of elastotic material in the dermis. Effective improvement of photoaged skin, simultaneous treatment and possibly also prevention of actinic keratoses, the possibility of repeated treatments and, in contrast to other procedures, limited and calculable side effects make PDT a promising procedure for skin rejuvenation.
Collapse
Affiliation(s)
- Sigrid Karrer
- Department of Dermatology, University Clinic of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Morton CA, Szeimies RM, Sidoroff A, Braathen LR. European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications - actinic keratoses, Bowen's disease, basal cell carcinoma. J Eur Acad Dermatol Venereol 2012. [PMID: 23181594 DOI: 10.1111/jdv.12031] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Topical photodynamic therapy (PDT) is a widely used non-invasive treatment for certain non-melanoma skin cancers, permitting treatment of large and multiple lesions with excellent cosmesis. High efficacy is demonstrated for PDT using standardized protocols in non-hyperkeratotic actinic keratoses, Bowen's disease, superficial basal cell carcinomas (BCC) and in certain thin nodular BCC, with superiority of cosmetic outcome over conventional therapies. Recurrence rates following PDT are typically equivalent to existing therapies, although higher than surgery for nodular BCC. PDT is not recommended for invasive squamous cell carcinoma. Treatment is generally well tolerated, but tingling discomfort or pain is common during PDT. New studies identify patients most likely to experience discomfort and permit earlier adoption of pain-minimization strategies. Reduced discomfort has been observed with novel protocols including shorter photosensitizer application times and in daylight PDT for actinic keratoses.
Collapse
Affiliation(s)
- C A Morton
- Department of Dermatology, Stirling Community Hospital, Stirling, UK.
| | | | | | | |
Collapse
|
13
|
Maisch T, Spannberger F, Regensburger J, Felgenträger A, Bäumler W. Fast and effective: intense pulse light photodynamic inactivation of bacteria. J Ind Microbiol Biotechnol 2012; 39:1013-21. [PMID: 22354734 DOI: 10.1007/s10295-012-1103-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/02/2012] [Indexed: 11/24/2022]
Abstract
The goal of this study was to investigate the photodynamic toxicity of TMPyP (5, 10, 15, 20-Tetrakis (1-methylpyridinium-4-yl)-porphyrin tetra p-toluenesulfonate) in combination with short pulses (ms) of an intense pulse light source within 10 s against Bacillus atrophaeus, Staphylococcus aureus, Methicillin-resistant S. aureus and Escherichia coli, major pathogens in food industry and in health care, respectively. Bacteria were incubated with a photoactive dye (TMPyP) that is subsequently irradiated with visible light flashes of 100 ms to induce oxidative damage immediately by generation of reactive oxygen species like singlet oxygen. A photodynamic killing efficacy of up to 6 log(10) (>99.9999%) was achieved within a total treatment time of 10 s using a concentration range of 1-100 μmol TMPyP and multiple light flashes of 100 ms (from 20 J cm(-2) up to 80 J cm(-2)). Both incubation of bacteria with TMPyP alone or application of light flashes only did not have any negative effect on bacteria survival. Here we could demonstrate for the first time that the combination of TMPyP as the respective photosensitizer and a light flash of 100 ms of an intense pulsed light source is enough to generate sufficient amounts of reactive oxygen species to kill these pathogens within a few seconds. Increasing antibiotic resistance requires fast and efficient new approaches to kill bacteria, therefore the photodynamic process seems to be a promising tool for disinfection of horizontal surfaces in industry and clinical purposes where savings in time is a critical point to achieve efficient inactivation of microorganisms.
Collapse
Affiliation(s)
- Tim Maisch
- Department of Dermatology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | | | | | | | | |
Collapse
|