1
|
Jürgensen HJ, van Putten S, Nørregaard KS, Bugge TH, Engelholm LH, Behrendt N, Madsen DH. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell Mol Life Sci 2020; 77:3161-3176. [PMID: 32100084 PMCID: PMC11105017 DOI: 10.1007/s00018-020-03481-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark.
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730, Herlev, Denmark.
| |
Collapse
|
2
|
Huang CJ, Lee FK, Chen SK, Chien CC, Wu ST, Wang YC. Clinical significance of interleukin‑6 and inducible nitric oxide synthase in ketamine‑induced cystitis. Int J Mol Med 2017; 41:836-844. [PMID: 29207018 PMCID: PMC5752171 DOI: 10.3892/ijmm.2017.3264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/30/2017] [Indexed: 11/21/2022] Open
Abstract
Ketamine is an ionotropic glutamatergic N-methyl-D-aspartate receptor antagonist, which is widely used among recreational drug abusers. Ketamine abusers exhibit substantially reduced bladder capacity, which can lead to urinary frequency. The molecular pathogenesis of ketamine-induced cystitis has been scarcely reported. Given previous clinical findings, it may be hypothesized that pathological alterations in smooth muscle cells (SMCs) of the urinary bladder serve a crucial role in the mechanism underlying cystitis. In the present study, two lineages of SMCs, one from differentiated foreskin-derived fibroblast-like stromal cells and the other from cultured normal aortic SMCs, were used to study ketamine-induced molecular alterations. Polymerase chain reaction was used to study the effects of ketamine on oxidative stress. The effects of adjuvant chemo-therapy with cyclophosphamide (CTX) were also investigated. The results indicated that the expression levels of interleukin-6 and inducible nitric oxide synthase (iNOS) were decreased, whereas collagen expression and deposition were increased in ketamine-treated SMCs. Conversely, treatment with CTX restored the expression of iNOS, which may prevent or limit oxidative damage. In conclusion, the present study demonstrated that ketamine may induce several molecular alterations in SMCs and these changes may be associated with the clinical symptoms observed in ketamine abusers. In addition, the specific chemotherapeutic agent CTX may reverse these ketamine-induced aberrations.
Collapse
Affiliation(s)
- Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Fa-Kung Lee
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shao-Kuan Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chih-Cheng Chien
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri‑Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Yen-Chieh Wang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| |
Collapse
|
3
|
Stavolone L, Lionetti V. Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses. Front Microbiol 2017; 8:1760. [PMID: 28955324 PMCID: PMC5600933 DOI: 10.3389/fmicb.2017.01760] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed.
Collapse
Affiliation(s)
- Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheBari, Italy.,International Institute of Tropical AgricultureIbadan, Nigeria
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "C. Darwin", "Sapienza" Università di RomaRome, Italy
| |
Collapse
|
4
|
Zhou D, Wang J, He LN, Li BH, Ding YN, Chen YW, Fan JG. Prolyl oligopeptidase attenuates hepatic stellate cell activation through induction of Smad7 and PPAR-γ. Exp Ther Med 2017; 13:780-786. [PMID: 28352366 PMCID: PMC5348651 DOI: 10.3892/etm.2017.4033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/21/2016] [Indexed: 12/30/2022] Open
Abstract
Prolyl oligopeptidase (POP) is a serine endopeptidase widely distributed in vivo with high activity in the liver. However, its biological functions in the liver have remained largely elusive. A previous study by our group has shown that POP produced N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) and thereby exerted an anti-fibrogenic effect on hepatic stellate cells (HSCs) in vitro. It was therefore hypothesized that POP may affect the activation state of HSCs and has an important role in liver fibrosis. The HSC-T6 immortalized rat liver stellate cell line was treated with the POP inhibitor S17092 or transfected with recombinant lentivirus to overexpress POP. Cell proliferation and apoptosis were determined using a Cell Counting Kit-8 and flow cytometry, respectively. The activation status of HSCs was determined by examination of the expression of α-smooth muscle actin (α-SMA), collagen I, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor (TGF)-β-Smad signaling and peroxisome proliferator activated receptor-γ (PPAR-γ). Inhibition by S17092 decreased, whereas lentiviral expression increased the activity of POP and cell proliferation, while neither of the treatments affected cell apoptosis. Of note, S17092 significantly increased, whereas POP overexpression decreased the expression of α-SMA and MCP-1 without affecting the expression of collagen I and TGF-β1. Furthermore, S17092 caused a reduction, whereas POP overexpression caused an upregulation of Smad7 protein and PPAR-γ, but not phosphorylated-Smad2/3 expression. In conclusion, POP attenuated the activation of HSCs through inhibition of TGF-β signaling and induction of PPAR-γ, which may have therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
- Da Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ling-Nan He
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Bing-Hang Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yong-Nian Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830028, P.R. China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
5
|
Immune Responses to Tissue-Restricted Nonmajor Histocompatibility Complex Antigens in Allograft Rejection. J Immunol Res 2017; 2017:6312514. [PMID: 28164137 PMCID: PMC5253484 DOI: 10.1155/2017/6312514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Chronic diseases that result in end-stage organ damage cause inflammation, which can reveal sequestered self-antigens (SAgs) in that organ and trigger autoimmunity. The thymus gland deletes self-reactive T-cells against ubiquitously expressed SAgs, while regulatory mechanisms in the periphery control immune responses to tissue-restricted SAgs. It is now established that T-cells reactive to SAgs present in certain organs (e.g., lungs, pancreas, and intestine) are incompletely eliminated, and the dysregulation of peripheral immuneregulation can generate immune responses to SAgs. Therefore, chronic diseases can activate self-reactive lymphocytes, inducing tissue-restricted autoimmunity. During organ transplantation, donor lymphocytes are tested against recipient serum (i.e., cross-matching) to detect antibodies (Abs) against donor human leukocyte antigens, which has been shown to reduce Ab-mediated hyperacute rejection. However, primary allograft dysfunction and rejection still occur frequently. Because donor lymphocytes do not express tissue-restricted SAgs, preexisting Abs against SAgs are undetectable during conventional cross-matching. Preexisting and de novo immune responses to tissue-restricted SAgs (i.e., autoimmunity) play a major role in rejection. In this review, we discuss the evidence that supports autoimmunity as a contributor to rejection. Testing for preexisting and de novo immune responses to tissue-restricted SAgs and treatment based on immune responses after organ transplantation may improve short- and long-term outcomes after transplantation.
Collapse
|
6
|
Morry J, Ngamcherdtrakul W, Gu S, Goodyear SM, Castro DJ, Reda MM, Sangvanich T, Yantasee W. Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis. Biomaterials 2015; 66:41-52. [PMID: 26196532 PMCID: PMC4522385 DOI: 10.1016/j.biomaterials.2015.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
Fibrotic diseases such as scleroderma have been linked to increased oxidative stress and upregulation of pro-fibrotic genes. Recent work suggests a role of NADPH oxidase 4 (NOX4) and heat shock protein 47 (HSP47) in inducing excessive collagen synthesis, leading to fibrotic diseases. Herein, we elucidate the relationship between NOX4 and HSP47 in fibrogenesis and propose to modulate them altogether as a new strategy to treat fibrosis. We developed a nanoparticle platform consisting of polyethylenimine (PEI) and polyethylene glycol (PEG) coating on a 50-nm mesoporous silica nanoparticle (MSNP) core. The nanoparticles effectively delivered small interfering RNA (siRNA) targeting HSP47 (siHSP47) in an in vitro model of fibrosis based on TGF-β stimulated fibroblasts. The MSNP core also imparted an antioxidant property by scavenging reactive oxygen species (ROS) and subsequently reducing NOX4 levels in the in vitro fibrogenesis model. The nanoparticle was far superior to n-acetyl cysteine (NAC) at modulating pro-fibrotic markers. In vivo evaluation was performed in a bleomycin-induced scleroderma mouse model, which shares many similarities to human scleroderma disease. Intradermal administration of siHSP47-nanoparticles effectively reduced HSP47 protein expression in skin to normal level. In addition, the antioxidant MSNP also played a prominent role in reducing the pro-fibrotic markers, NOX4, alpha smooth muscle actin (α-SMA), and collagen type I (COL I), as well as skin thickness of the mice.
Collapse
Affiliation(s)
- Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Shaun M Goodyear
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - David J Castro
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 24 Independence Ave, Lake Oswego, OR 97035, USA
| | - Moataz M Reda
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Thanapon Sangvanich
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 24 Independence Ave, Lake Oswego, OR 97035, USA.
| |
Collapse
|
7
|
A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:203978. [PMID: 26167476 PMCID: PMC4488526 DOI: 10.1155/2015/203978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/21/2015] [Accepted: 06/02/2015] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways.
Collapse
|
8
|
Hanafusa H, Morikawa Y, Uehara T, Kaneto M, Ono A, Yamada H, Ohno Y, Urushidani T. Comparative gene and protein expression analyses of a panel of cytokines in acute and chronic drug-induced liver injury in rats. Toxicology 2014; 324:43-54. [PMID: 25051504 DOI: 10.1016/j.tox.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/29/2022]
Abstract
Drug-induced liver injury (DILI) is a significant safety issue associated with medication use, and is the major cause of failures in drug development and withdrawal in post marketing. Cytokines are signaling molecules produced and secreted by immune cells and play crucial roles in the progression of DILI. Although there are numerous reports of cytokine changes in several DILI models, a comprehensive analysis of cytokine expression changes in rat liver injury induced by various compounds has, to the best of our knowledge, not been performed. In the past several years, we have built a public, free, large-scale toxicogenomics database, called Open TG-GATEs, containing microarray data and toxicity data of the liver of rats treated with various hepatotoxic compounds. In this study, we measured the protein expression levels of a panel of 24 cytokines in frozen liver of rats treated with a total of 20 compounds, obtained in the original study that formed the basis of the Open TG-GATEs database and analyzed protein expression profiles combined with mRNA expression profiles to investigate the correlation between mRNA and protein expression levels. As a result, we demonstrated significant correlations between mRNA and protein expression changes for interleukin (IL)-1β, IL-1α, monocyte chemo-attractant protein (MCP)-1/CC-chemokine ligand (Ccl)2, vascular endothelial growth factor A (VEGF-A), and regulated upon activation normal T cell expressed and secreted (RANTES)/Ccl5 in several different types of DILI. We also demonstrated that IL-1β protein and MCP-1/Ccl2 mRNA were commonly up-regulated in the liver of rats treated with different classes of hepatotoxicants and exhibited the highest accuracy in the detection of hepatotoxicity. The results also demonstrate that hepatic mRNA changes do not always correlate with protein changes of cytokines in the liver. This is the first study to provide a comprehensive analysis of mRNA-protein correlations of factors involved in various types of DILI, as well as additional insights into the importance of understanding complex cytokine expression changes in assessing DILI.
Collapse
Affiliation(s)
- Hiroyuki Hanafusa
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan
| | - Yuji Morikawa
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan
| | - Takeki Uehara
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,.
| | - Masako Kaneto
- Developmental Research Laboratories, Shionogi & Co., Ltd., Futaba-cho, Toyonaka, Osaka, Japan
| | - Atsushi Ono
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,; National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan
| | - Yasuo Ohno
- National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Tetsuro Urushidani
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Ibaraki, Osaka, Japan,; Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, Japan
| |
Collapse
|
9
|
Angaswamy N, Klein C, Tiriveedhi V, Gaut J, Anwar S, Rossi A, Phelan D, Wellen JR, Shenoy S, Chapman WC, Mohanakumar T. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. Am J Transplant 2014; 14:685-93. [PMID: 24410875 DOI: 10.1111/ajt.12592] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023]
Abstract
Antibodies (Abs) to donor HLA (donor-specific antibodies [DSA]) have been associated with transplant glomerulopathy (TG) following kidney transplantation (KTx). Immune responses to tissue-restricted self-antigens (self-Ags) have been proposed to play a role in chronic rejection. We determined whether KTx with TG have immune responses to self-Ags, Collagen-IV (Col-IV) and fibronectin (FN). DSA were determined by solid phase assay, Abs against Col-IV and FN by enzyme-linked immunosorbent assay and CD4+ T cells secreting interferon gamma (IFN-γ), IL-17 or IL-10 by ELISPOT. Development of Abs to self-Ags following KTx increased the risk for TG with an odds ratio of 22 (p-value = 0.001). Abs to self-Ags were IgG and IgM isotypes. Pretransplant Abs to self-Ags increased the risk of TG (22% vs. 10%, p < 0.05). Abs to self-Ags were identified frequently in KTx with DSA. TG patients demonstrated increased Col-IV and FN specific CD4+ T cells secreting IFN-γ and IL-17 with reduction in IL-10. We conclude that development of Abs to self-Ags is a risk factor and having both DSA and Abs to self-Ags increases the risk for TG. The increased frequency of self-Ag-specific IFN-γ and IL-17 cells with reduction in IL-10 demonstrate tolerance breakdown to self-Ags which we propose play a role in the pathogenesis of TG.
Collapse
Affiliation(s)
- N Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Angaswamy N, Tiriveedhi V, Sarma NJ, Subramanian V, Klein C, Wellen J, Shenoy S, Chapman WC, Mohanakumar T. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection. Hum Immunol 2013; 74:1478-85. [PMID: 23876679 DOI: 10.1016/j.humimm.2013.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
Abstract
Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction.
Collapse
Affiliation(s)
- Nataraju Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Detection of antibodies to self-antigens (K-alpha 1 tubulin, collagen I, II, IV, and V, myosin, and vimentin) by enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 2013; 1034:335-41. [PMID: 23775748 DOI: 10.1007/978-1-62703-493-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) is a widely used technique for detecting antibodies (Abs) and is employed in clinical laboratories to identify Abs against various self-antigens-autoAb development and quantitation. This method relies on specific antigen-Ab interactions where one of the components is immobilized on a solid surface. Using this method, the concentrations of antigens or Ab present in the serum can be quantified with high specificity and accuracy. Here, we describe the detection of autoAbs to various self-antigens with different tissue restriction patterns which includes collagens, k-α1 tubulin, vimentin, and myosin. We also discuss their relevance in monitoring for rejection following solid organ transplantation.
Collapse
|
12
|
Zhang L, Wu T, Chen JM, Yang LL, Song HY, Ji G. Danshensu inhibits acetaldehyde-induced proliferation and activation of hepatic stellate cell-T6. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:1155-1161. [PMID: 23073200 DOI: 10.3736/jcim20121013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the effects of danshensu, the main component of the extract of Chinese medicine Salvia miltiorrhiza, on the proliferation and activation of hepatic stellate cells (HSCs). METHODS The activation of HSC-T6 was induced by exposure to acetaldehyde. In the meantime, different doses of danshensu were added to the culture medium. After 24 h of treatment with danshensu in acetaldehyde, the viability of HSC-T6 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cell cycle was determined through flow cytometry, and the gene transcription levels of plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β1 (TGF-β1), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2) were analyzed by real-time quantitative polymerase chain reaction. RESULTS The proliferation of HSCs induced by 200 μmol/L acetaldehyde could be significantly inhibited by danshensu, and the percentage of HSCs in S phase was significantly increased as compared with the control cells (P<0.05), which were respectively evidenced by MTT assay and flow cytometry. Danshensu down-regulated the mRNA expression of TGF-β1 and PAI-1 and up-regulated the uPA transcription level (P<0.01), while the transcription level of MMP-2 was not significantly affected in HSC-T6. CONCLUSION Danshensu can inhibit the proliferation and activation of HSC-T6, as well as regulate some cytokines involved in extracellular matrix accumulation, which offers a potential therapeutic alternative for liver fibrosis.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | |
Collapse
|
13
|
Sarma NJ, Tiriveedhi V, Angaswamy N, Mohanakumar T. Role of antibodies to self-antigens in chronic allograft rejection: potential mechanism and therapeutic implications. Hum Immunol 2012; 73:1275-81. [PMID: 22789626 DOI: 10.1016/j.humimm.2012.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/21/2012] [Accepted: 06/29/2012] [Indexed: 02/07/2023]
Abstract
Significant progress has been made in preventing acute allograft rejection following solid organ transplantation resulting in improved allograft survival. However, long term function still remains disappointing primarily due to chronic allograft rejection. Alloimmune responses primarily defined by the development of antibodies (Abs) to donor mismatched major histocompatibility antigens during the post-transplantation period have been strongly correlated to the development of chronic rejection. In addition, recent studies have demonstrated an important role for autoimmunity including the development of Abs to organ specific self-antigens in the pathogenesis of chronic allograft rejection. Based on this, a new paradigm has evolved indicating a possible cross-talk between the alloimmune responses and autoimmunity leading to chronic rejection. In this review, we will discuss the emerging concept for the role of cellular and humoral immune responses to self-antigens in the immunopathogenesis of chronic allograft rejection which has the potential to develop new strategies for the prevention and/or treatment of chronic rejection.
Collapse
Affiliation(s)
- Nayan J Sarma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | | | |
Collapse
|
14
|
Temporal association between increased virus-specific Th17 response and spontaneous recovery from recurrent hepatitis C in a liver transplant recipient. Transplantation 2012; 92:1364-70. [PMID: 22082818 DOI: 10.1097/tp.0b013e31823817f5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Spontaneous clearance of hepatitis C virus (HCV) after orthotopic liver transplantation (OLT) is a rare occurrence. Here, we present detailed immunological analysis of an interferon naive OLT recipient receiving uninterrupted immunosuppression who cleared HCV spontaneously 2 years after transplantation. METHODS Enzyme-linked immunospot assay analysis of peripheral T-cell interferon gamma (IFN-γ), interleukin (IL)-10, and IL-17 response to HCV core and nonstructural antigen 4 and enzyme-linked immunosorbent assay (ELISA) to collagen (Col) subtypes I, II, IV, and V were performed in the index patient at the time of viral clearance and compared with an OLT cohort with persistent viremia matched for time from OLT, immunosuppression, and histology. Enzyme-linked immunospot assay and ELISA analysis were repeated on the patient 4 years after OLT. Transcription-mediated amplification assays were used to confirm viral clearance. RESULTS Compared with a cohort of post-OLT and nontransplanted viremic HCV patients, the index patient with HCV clearance demonstrated higher IL-17, IL-10, and lower IFN-γ response to nonstructural antigen 4 and core antigen and a higher titer of antibodies (Abs) to Col subtypes I, II, and V during clearance. On follow-up 2 years later, HCV-specific IFN-γ was increased in the index patient, with a decline in IL-17 and IL-10 response and Col I, II, and V Ab titer. CONCLUSIONS Virus-induced activation of Th-17 cells may contribute to HCV clearance post-OLT. Maintenance of viral suppression may be facilitated by restoration of Th1 (IFN-γ) responses. Modulation of Th17 immunity deserves further attention as a therapeutic strategy in the treatment of HCV recurrence post-OLT.
Collapse
|
15
|
Donor graft steatosis influences immunity to hepatitis C virus and allograft outcome after liver transplantation. Transplantation 2012; 92:1259-68. [PMID: 22011763 DOI: 10.1097/tp.0b013e318235a1ab] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) recurrence after orthotopic liver transplantation (OLT) is universal, often with accelerated allograft fibrosis. Donor liver steatosis is frequently encountered and often associated with poor early postoperative outcome. The aim of this study was to test the hypothesis that allograft steatosis alters immune responses to HCV and self-antigens promoting allograft fibrosis. METHODS Forty-eight HCV OLT recipients (OLTr) were enrolled and classified based on amount of allograft macrovesicular steatosis at time of OLT. Group 1: no steatosis (0%-5% steatosis, n=21), group 2: mild (5%-35%, n=16), and group 3: moderate (>35%, n=11). Cells secreting interleukin (IL)-17, IL-10, and interferon gamma (IFN-γ) in response to HCV antigens were enumerated by Enzyme Linked Immunospot Assay. Serum cytokines were measured by Luminex, antibodies to Collagen I, II, III, IV, and V by ELISA. RESULTS OLTr of moderate steatotic grafts had the highest incidence of advanced fibrosis in protocol 1 year post-OLT biopsy (10.8% vs. 15.8% vs. 36.6%, r=0.157, P<0.05). OLTr from groups 2 and 3 had increased HCV-specific IL-17 (P<0.05) and IL-10 (P<0.05) with reduced IFN-γ (P<0.05) secreting cells when compared with group 1. This was associated with increase in serum IL-17, IL-10, IL-1β, IL-6, IL-5, and decreased IFN-γ. In addition, there was development of antibodies to Collagen I, II, III and V in OLTr with increased steatosis (P<0.05). CONCLUSION The results demonstrate that allograft steatosis influences post-OLT HCV-specific immune responses leading to an IL-17 T-helper response and activation of humoral immune responses to liver-associated self-antigens that may contribute to allograft fibrosis and poor outcome.
Collapse
|