1
|
Ly M, Babekuhl D, Niu A, Yousif P, Wang C, Lau NS, Gorrell MD, McCaughan GW, Crawford M, Pulitano C. Development of a Protocol for Long-Term Ex Vivo Normothermic Machine Perfusion of Rodent Livers. Artif Organs 2025. [PMID: 40386942 DOI: 10.1111/aor.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/02/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
INTRODUCTION Long-term normothermic machine perfusion (LT-NMP) enables the assessment and optimization of livers for days and, potentially, weeks. However, models of LT-NMP have only been described for human and pig livers, which are resource intensive and impractical for laboratory research. Cost-effective small animal models of LT-NMP are needed for future research. This study aimed to develop a system for LT-NMP of rat livers for up to 72 h. METHODS This study was performed in two stages: the development phase (n = 20) and validation phase (n = 5). The perfusion system included an organ reservoir, pump, heat exchanger, long-term oxygenator, and dialysis. Hormonal and nutritional support were continuously infused. During the validation phase, five consecutive grafts were perfused using our protocol. At 72 h postreperfusion, grafts were assessed for viability, which was based on hemodynamic stability, mitochondrial function, bile production, and metabolic activity. RESULTS Rodent livers were supported up to 107 h using our LT-NMP protocol. All grafts in the validation phase remained viable at 72 h (n = 5/5). The median oxygen consumption and bile production at 72 h were 0.079 mLO2/min/g-liver and 8.6 uL/h/g-liver, respectively. All grafts had a systemic vascular resistance less than 0.25 mmHg/mL/min. Metabolic activity, defined as lactate clearance, glucose production, or response to glucagon, was observed in all grafts (5/5). CONCLUSIONS This is the first study to report LT-NMP of rodent livers up to 5 days. Using our protocol, rat livers could reliably be supported until 72 h. This model provides a greater opportunity to investigate novel therapeutics to assess, optimize, and regenerate liver grafts for transplantation.
Collapse
Affiliation(s)
- Mark Ly
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Babekuhl
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Anita Niu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Yousif
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Chuanmin Wang
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ngee-Soon Lau
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Crawford
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Ran Q, Zhang J, Zhong J, Lin J, Zhang S, Li G, You B. Organ preservation: current limitations and optimization approaches. Front Med (Lausanne) 2025; 12:1566080. [PMID: 40206471 PMCID: PMC11980443 DOI: 10.3389/fmed.2025.1566080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Despite the annual rise in patients with end-stage diseases necessitating organ transplantation, the scarcity of high-quality grafts constrains the further development of transplantation. The primary causes of the graft shortage are the scarcity of standard criteria donors, unsatisfactory organ preservation strategies, and mismatching issues. Organ preservation strategies are intimately related to pre-transplant graft viability and the incidence of adverse clinical outcomes. Static cold storage (SCS) is the current standard practice of organ preservation, characterized by its cost-effectiveness, ease of transport, and excellent clinical outcomes. However, cold-induced injury during static cold preservation, toxicity of organ preservation solution components, and post-transplantation reperfusion injury could further exacerbate graft damage. Long-term ex vivo dynamic machine perfusion (MP) preserves grafts in a near-physiological condition, evaluates graft viability, and cures damage to grafts, hence enhancing the usage and survival rates of marginal organs. With the increased use of extended criteria donors (ECD) and advancements in machine perfusion technology, static cold storage is being gradually replaced by machine perfusion. This review encapsulates the latest developments in cryopreservation, subzero non-freezing storage, static cold storage, and machine perfusion. The emphasis is on the injury mechanisms linked to static cold storage and optimization strategies, which may serve as references for the optimization of machine perfusion techniques.
Collapse
Affiliation(s)
- Qiulin Ran
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jisheng Zhong
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ji Lin
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shuai Zhang
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guang Li
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bin You
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wehrle CJ, Zhang M, Khalil M, Pita A, Modaresi Esfeh J, Diago-Uso T, Kim J, Aucejo F, Kwon DCH, Ali K, Cazzaniga B, Miyazaki Y, Liu Q, Fares S, Hong H, Tuul M, Jiao C, Sun K, Fairchild RL, Quintini C, Fujiki M, Pinna AD, Miller C, Hashimoto K, Schlegel A. Impact of Back-to-Base Normothermic Machine Perfusion on Complications and Costs: A Multicenter, Real-World Risk-Matched Analysis. Ann Surg 2024; 280:300-310. [PMID: 38557793 DOI: 10.1097/sla.0000000000006291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Assess cost and complication outcomes after liver transplantation (LT) using normothermic machine perfusion (NMP). BACKGROUND End-ischemic NMP is often used to aid logistics, yet its impact on outcomes after LT remains unclear, as does its true impact on costs associated with transplantation. METHODS Deceased donor liver recipients at 2 centers (January 1, 2019, to June 30, 2023) were included. Retransplants, splits, and combined grafts were excluded. End-ischemic NMP (OrganOx-Metra) was implemented in October 2022 for extended-criteria donation after brain death (DBDs), all donations after circulatory deaths (DCDs), and logistics. NMP cases were matched 1:2 with static cold storage controls (SCS) using the Balance-of-Risk [donation after brain death (DBD)-grafts] and UK-DCD Score (DCD-grafts). RESULTS Overall, 803 transplantations were included, 174 (21.7%) receiving NMP. Matching was achieved between 118 NMP-DBDs with 236 SCS; and 37 NMP-DCD with 74 corresponding SCS. For both graft types, median inpatient comprehensive complications index values were comparable between groups. DCD-NMP grafts experienced reduced cumulative 90-day comprehensive complications index (27.6 vs 41.9, P =0.028). NMP also reduced the need for early relaparotomy and renal replacement therapy, with subsequently less frequent major complications (Clavien-Dindo ≥IVa). This effect was more pronounced in DCD transplants. NMP had no protective effect on early biliary complications. Organ acquisition/preservation costs were higher with NMP, yet NMP-treated grafts had lower 90-day pretransplant costs in the context of shorter waiting list times. Overall costs were comparable for both cohorts. CONCLUSIONS This is the first risk-adjusted outcome and cost analysis comparing NMP and SCS. In addition to logistical benefits, NMP was associated with a reduction in relaparotomy and bleeding in DBD grafts, and overall complications and post-LT renal replacement for DCDs. While organ acquisition/preservation was more costly with NMP, overall 90-day health care costs-per-transplantation were comparable.
Collapse
Affiliation(s)
| | | | | | | | - Jamak Modaresi Esfeh
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH
| | - Teresa Diago-Uso
- Department of Liver Transplantation, Cleveland Clinic Abu Dhabi, Cleveland, OH
| | - Jaekeun Kim
- Transplantation Center, Cleveland Clinic, OH
| | | | | | - Khaled Ali
- Transplantation Center, Cleveland Clinic, OH
| | | | | | - Qiang Liu
- Transplantation Center, Cleveland Clinic, OH
| | - Sami Fares
- Transplantation Center, Cleveland Clinic, OH
| | - Hanna Hong
- Transplantation Center, Cleveland Clinic, OH
| | | | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| | - Cristiano Quintini
- Department of Liver Transplantation, Cleveland Clinic Abu Dhabi, Cleveland, OH
| | | | | | | | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| |
Collapse
|
4
|
Mahboub P, Aburawi M, Ozgur OS, Pendexter C, Cronin S, Lin FM, Jain R, Karabacak MN, Karimian N, Tessier SN, Markmann JF, Yeh H, Uygun K. Gradual rewarming with a hemoglobin-based oxygen carrier improves viability of donation after circulatory death in rat livers. FRONTIERS IN TRANSPLANTATION 2024; 3:1353124. [PMID: 38993754 PMCID: PMC11235298 DOI: 10.3389/frtra.2024.1353124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Background Donation after circulatory death (DCD) grafts are vital for increasing available donor organs. Gradual rewarming during machine perfusion has proven effective in mitigating reperfusion injury and enhancing graft quality. Limited data exist on artificial oxygen carriers as an effective solution to meet the increasing metabolic demand with temperature changes. The aim of the present study was to assess the efficacy and safety of utilizing a hemoglobin-based oxygen carrier (HBOC) during the gradual rewarming of DCD rat livers. Methods Liver grafts were procured after 30 min of warm ischemia. The effect of 90 min of oxygenated rewarming perfusion from ice cold temperatures (4 °C) to 37 °C with HBOC after cold storage was evaluated and the results were compared with cold storage alone. Reperfusion at 37 °C was performed to assess the post-preservation recovery. Results Gradual rewarming with HBOC significantly enhanced recovery, demonstrated by markedly lower lactate levels and reduced vascular resistance compared to cold-stored liver grafts. Increased bile production in the HBOC group was noted, indicating improved liver function and bile synthesis capacity. Histological examination showed reduced cellular damage and better tissue preservation in the HBOC-treated livers compared to those subjected to cold storage alone. Conclusion This study suggests the safety of using HBOC during rewarming perfusion of rat livers as no harmful effect was detected. Furthermore, the viability assessment indicated improvement in graft function.
Collapse
Affiliation(s)
- Paria Mahboub
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Mohamed Aburawi
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - O Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Stephanie Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Florence Min Lin
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Murat N Karabacak
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
5
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Lurje I, Uluk D, Hammerich L, Pratschke J, Tacke F, Lurje G. Comparing hypothermic oxygenated and normothermic liver machine perfusion: Translation matters. J Hepatol 2024; 80:e163-e165. [PMID: 37827473 DOI: 10.1016/j.jhep.2023.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
7
|
Westhaver LP, Nersesian S, Arseneau RJ, Hefler J, Hargreaves BK, Edgar A, Azizieh Y, Cuesta-Gomez N, Izquierdo DL, Shapiro AJ, Gala-Lopez BL, Boudreau JE. Mitochondrial DNA levels in perfusate and bile during ex vivo normothermic machine correspond with donor liver quality. Heliyon 2024; 10:e27122. [PMID: 38463874 PMCID: PMC10920371 DOI: 10.1016/j.heliyon.2024.e27122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Ex vivo normothermic machine perfusion (NMP) preserves donor organs and permits real-time assessment of allograft health, but the most effective indicators of graft viability are uncertain. Mitochondrial DNA (mtDNA), released consequent to traumatic cell injury and death, including the ischemia-reperfusion injury inherent in transplantation, may meet the need for a biomarker in this context. We describe a real time PCR-based approach to assess cell-free mtDNA during NMP as a universal biomarker of allograft quality. Measured in the perfusate fluid of 29 livers, the quantity of mtDNA correlated with metrics of donor liver health including International Normalized Ratio (INR), lactate, and warm ischemia time, and inversely correlated with inferior vena cava (IVC) flow during perfusion. Our findings endorse mtDNA as a simple and rapidly measured feature that can inform donor liver health, opening the possibility to better assess livers acquired from extended criteria donors to improve organ supply.
Collapse
Affiliation(s)
| | - Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Joshua Hefler
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Alexander Edgar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Yara Azizieh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Dayne L. Izquierdo
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - A.M. James Shapiro
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris L. Gala-Lopez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
8
|
Dondossola D, Lonati C, Battistin M, Vivona L, Zanella A, Maggioni M, Valentina V, Zizmare L, Trautwein C, Schlegel A, Gatti S. Twelve-hour normothermic liver perfusion in a rat model: characterization of the changes in the ex-situ bio-molecular phenotype and metabolism. Sci Rep 2024; 14:6040. [PMID: 38472309 DOI: 10.1038/s41598-024-56433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy.
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Luigi Vivona
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vaira Valentina
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| |
Collapse
|
9
|
Ohara M, Ishikawa J, Yoshimoto S, Hakamata Y, Kobayashi E. A rat model of dual-flow liver machine perfusion system. Acta Cir Bras 2023; 38:e387723. [PMID: 37909599 PMCID: PMC10664844 DOI: 10.1590/acb387723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE As clinical liver perfusion systems use portal vein and artery flow, dual perfusion techniques are required even in small animal models in order to reproduce clinical setting. The aim of this study was to construct a new dual-flow perfusion system in rat model and optimized the oxygen supply to ensure the aerobic metabolization. METHODS The dual-flow circuit was fabricated using rat liver and whole blood samples as perfusates. The oxygen supply was controlled according to the amount of dissolved oxygen in the perfusate. Perfusate parameters and adenosine triphosphate (ATP) levels were analyzed to evaluate organ function and metabolic energy state. Stored whole blood also tested the suitability as perfusate. RESULTS Stored blood showed decrease oxygen delivery and liver function compared to fresh blood. Using fresh blood as perfusate with air only, the dissolved oxygen levels remained low and anaerobic metabolism increased. In contrast, with oxygen control at living body level, anaerobic metabolism was well suppressed, and tissue ATP content was increased. CONCLUSIONS We developed a new dual-flow system that enable to reproduce the clinical settings. The perfusion system showed the possibility to improve the energy metabolic state of the perfused organ under appropriate partial pressure of oxygen.
Collapse
Affiliation(s)
- Masayuki Ohara
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
- Screen Holdings Co., Ltd. – Innovation Development Department – Tokyo, Japan
| | - Jun Ishikawa
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
- Screen Holdings Co., Ltd. – Innovation Development Department – Tokyo, Japan
| | - Syuhei Yoshimoto
- Screen Holdings Co., Ltd. – Innovation Development Department – Tokyo, Japan
| | - Yoji Hakamata
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
| | - Eiji Kobayashi
- Nippon Veterinary and Life Science University – School of Veterinary Nursing and Technology – Tokyo, Japan
- Jikei University School of Medicine – Department of Kidney Regenerative Medicine – Kyoto, Japan
| |
Collapse
|
10
|
Ly M, Lau NS, McKenzie C, Kench JG, Seyfi D, Majumdar A, Liu K, McCaughan G, Crawford M, Pulitano C. Histological Assessment of the Bile Duct before Liver Transplantation: Does the Bile Duct Injury Score Predict Biliary Strictures? J Clin Med 2023; 12:6793. [PMID: 37959258 PMCID: PMC10648970 DOI: 10.3390/jcm12216793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Histological injury to the biliary tree during organ preservation leads to biliary strictures after liver transplantation. The Bile Duct Injury (BDI) score was developed to assess histological injury and identify the grafts most likely to develop biliary strictures. The BDI score evaluates the bile duct mural stroma, peribiliary vascular plexus (PVP) and deep peribiliary glands (DPGs), which were correlated with post-transplant biliary strictures. However, the BDI score has not been externally validated. The aim of this study was to verify whether the BDI score could predict biliary strictures at our transplant centre. METHODS Brain-dead donor liver grafts transplanted at a single institution from March 2015 to June 2016 were included in this analysis. Bile duct biopsies were collected immediately before transplantation and assessed for bile duct injury by two blinded pathologists. The primary outcome was the development of clinically significant biliary strictures within 24 months post-transplant. RESULTS Fifty-seven grafts were included in the study which included 16 biliary strictures (28%). Using the BDI score, mural stromal, PVP and DPG injury did not correlate with biliary strictures including Non-Anastomotic Strictures. Severe inflammation (>50 leucocytes per HPF) was the only histological feature inversely correlated with the primary outcome (absent in the biliary stricture group vs. 41% in the no-stricture group, p = 0.001). CONCLUSIONS The current study highlights limitations of the histological assessment of bile duct injury. Although all grafts had bile duct injury, only inflammation was associated with biliary strictures. The BDI score was unable to predict post-transplant biliary strictures in our patient population.
Collapse
Affiliation(s)
- Mark Ly
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ngee-Soon Lau
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Catriona McKenzie
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - James G. Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Doruk Seyfi
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Avik Majumdar
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ken Liu
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Centenary Institute, Sydney, NSW 2050, Australia
| | - Geoffrey McCaughan
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Centenary Institute, Sydney, NSW 2050, Australia
| | - Michael Crawford
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Carlo Pulitano
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
11
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
12
|
Bai Y, Shi JH, Liu Q, Yang DJ, Yan ZP, Zhang JK, Tang HW, Guo WZ, Jin Y, Zhang SJ. Charged multivesicular body protein 2B ameliorates biliary injury in the liver from donation after cardiac death rats via autophagy with air-oxygenated normothermic machine perfusion. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166686. [PMID: 36907288 DOI: 10.1016/j.bbadis.2023.166686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
Normothermic machine perfusion (NMP) could provide a curative treatment to reduce biliary injury in donation after cardiac death (DCD) donor livers; however, the underlying mechanisms remain poorly understood. In a rat model, our study compared air-oxygenated NMP to hyperoxygenated NMP and found that air-oxygenated NMP improved DCD functional recovery. Here, we found that the charged multivesicular body protein 2B (CHMP2B) expression was substantially elevated in the intrahepatic biliary duct endothelium of the cold-preserved rat DCD liver after air-oxygenated NMP or in biliary endothelial cells under hypoxia/physoxia. CHMP2B knockout (CHMP2B-/-) rat livers showed increased biliary injury after air-oxygenated NMP, indicated by decreased bile production and bilirubin level, elevated biliary levels of lactate dehydrogenase and gamma-glutamyl transferase. Mechanically, we demonstrated that CHMP2B was transcriptionally regulated by Kruppel-like transcription factor 6 (KLF6) and alleviated biliary injury through decreasing autophagy. Collectively, our results suggested that air-oxygenated NMP regulates CHMP2B expression through the KLF6, which reduces biliary injury by inhibiting autophagy. Targeting the KLF6-CHMP2B autophagy axis may provide a solution to reducing biliary injury in DCD livers undergoing NMP.
Collapse
Affiliation(s)
- Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dong-Jing Yang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ping Yan
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hong-Wei Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
13
|
Does an Additional Bile Duct Flush With Low-viscosity Preservation Solution Reduce Bile Duct Injury? A Single-blinded Randomized Clinical Trial. Transplant Direct 2023; 9:e1443. [PMID: 36875942 PMCID: PMC9977485 DOI: 10.1097/txd.0000000000001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
Biliary complications are a common cause of morbidity after liver transplantation and associated with bile duct injury. To reduce injury, a bile duct flush is performed with high-viscosity preservation solution. It has been suggested that an earlier additional bile duct flush with low-viscosity preservation solution may reduce bile duct injury and biliary complications. This study aimed to investigate whether an earlier additional bile duct flush would reduce bile duct injury or biliary complications. Methods A randomized trial was conducted using 64 liver grafts from brain dead donors. The control group received a bile duct flush with University of Wisconsin (UW) solution after donor hepatectomy. The intervention group received a bile duct flush using low-viscosity Marshall solution immediately after the onset of cold ischemia and a bile duct flush with University of Wisconsin solution after donor hepatectomy. The primary outcomes were the degree of histological bile duct injury, assessed using the bile duct injury score, and biliary complications within 24 mo of transplant. Results Bile duct injury scores were not different between the 2 groups. Similar rates of biliary complications occurred in the intervention group (31% [n = 9]) and controls (23% [n = 8]) (P = 0.573). No difference between groups was observed for anastomotic strictures (24% versus 20%, P = 0.766) or nonanastomotic strictures (7% versus 6%, P = 1.00). Conclusions This is the first randomized trial to investigate an additional bile duct flush using low-viscosity preservation solution during organ procurement. The findings from this study suggest that performing an earlier additional bile duct flush with Marshall solution does not prevent biliary complications and bile duct injury.
Collapse
|
14
|
Łuczykowski K, Warmuzińska N, Kollmann D, Selzner M, Bojko B. Biliary Metabolome Profiling for Evaluation of Liver Metabolism and Biliary Tract Function Related to Organ Preservation Method and Degree of Ischemia in a Porcine Model. Int J Mol Sci 2023; 24:2127. [PMID: 36768452 PMCID: PMC9916698 DOI: 10.3390/ijms24032127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
The development of surgical techniques, immunosuppressive strategies and new organ preservation methods have meant that transplant centers have to face the problem of an insufficient number of organs for transplantation concerning the constantly growing demand. Therefore, using organs from expanded criteria donors and developing new analytical solutions to find parameters or compounds that would allow a more efficient assessment of organ quality before transplantation are options for meeting this challenge. This study proposed bile metabolomic analysis to evaluate liver metabolism and biliary tract function depending on the organ preservation method and degree of warm ischemia time. The analyses were performed on solid-phase microextraction-prepared bile samples from porcine model donors with mild (heart beating donor [HBD]) and moderate warm ischemia (donation after circulatory death [DCD]) grafts subjected to static cold storage (SCS) or normothermic ex vivo liver perfusion (NEVLP) before transplantation. Bile produced in the SCS-preserved livers was characterized by increased levels of metabolites such as chenodeoxycholic acid, arachidonic acid and 5S-hydroxyeicosatetraeonic acid, as well as saturated and monounsaturated lysophosphatidylcholines (LPC). Such changes may be associated with differences in the bile acid synthesis pathways and organ inflammation. Moreover, it has been shown that NEVLP reduced the negative effect of ischemia on organ function. A linear relationship was observed between levels of lipids from the LPC group and the time of organ ischemia. This study identified metabolites worth considering as potential markers of changes occurring in preserved grafts.
Collapse
Affiliation(s)
- Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| | - Natalia Warmuzińska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| | - Dagmar Kollmann
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| |
Collapse
|
15
|
Li B, Zhang J, Shen C, Zong T, Zhao C, Zhao Y, Lu Y, Sun S, Zhu H. Application of polymerized porcine hemoglobin in the ex vivo normothermic machine perfusion of rat livers. Front Bioeng Biotechnol 2022; 10:1072950. [PMID: 36686244 PMCID: PMC9854803 DOI: 10.3389/fbioe.2022.1072950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background: In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion (NMP) may reduce preservation injury, improve graft viability and potentially allows ex vivo assessment of graft viability before transplantation. The polymerized porcine hemoglobin is a kind of hemoglobin oxygen carrier prepared by crosslinking porcine hemoglobin by glutaraldehyde to form a polymer. The pPolyHb has been proved to have the ability of transporting oxygen which could repair the organ ischemia-reperfusion injury in rats. Objective: In order to evaluate the effectiveness of rat liver perfusion in vitro based on pPolyHb, we established the NMP system, optimized the perfusate basic formula and explored the optimal proportion of pPolyHb and basal perfusate. Methods: The liver was removed and perfused for 6 h at 37°C. We compared the efficacy of liver perfusion with different ratios of pPolyHb. Subsequently, compared the perfusion effect using Krebs Henseleit solution and pPolyHb perfusate of the optimal proportion, and compared with the liver preserved with UW solution. At 0 h, 1 h, 3 h and 6 h after perfusion, appropriate samples were collected for blood gas analysis and liver injury indexes detection. Some tissue samples were collected for H&E staining and TUNEL staining to observe the morphology and detect the apoptosis rate of liver cells. And we used Western Blot test to detect the expression of Bcl-2 and Bax in the tissues. Results: According to the final results, the optimal addition ratio of pPolyHb was 24%. By comparing the values of Bcl-2/Bax, the apoptosis rate of pPolyHb group was significantly reduced. Under this ratio, the results of H&E staining and TUNEL staining showed that the liver morphology was well preserved without additional signs of hepatocyte ischemia, biliary tract injury, or hepatic sinusoid injury, and hepatocyte apoptosis was relatively mild. Conclusion: Through the above-mentioned study we show that within 6 h of perfusion based on pPolyHb, liver physiological and biochemical activities may essentially be maintained in vitro. This study demonstrates that a pPolyHb-based perfusate is feasible for NMP of rat livers. This opens up a prospect for further research on NMP.
Collapse
Affiliation(s)
- Bin Li
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Jie Zhang
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Chuanyan Shen
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Tingting Zong
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Cong Zhao
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yumin Zhao
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yunhua Lu
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Siyue Sun
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongli Zhu
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| |
Collapse
|
16
|
Dingfelder J, Rauter L, Berlakovich GA, Kollmann D. Biliary Viability Assessment and Treatment Options of Biliary Injury During Normothermic Liver Perfusion—A Systematic Review. Transpl Int 2022; 35:10398. [PMID: 35707635 PMCID: PMC9189281 DOI: 10.3389/ti.2022.10398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In recent years, significant progress has been made in the field of liver machine perfusion. Many large transplant centers have implemented machine perfusion strategies in their clinical routine. Normothermic machine perfusion (NMP) is primarily used to determine the quality of extended criteria donor (ECD) organs and for logistical reasons. The vast majority of studies, which assessed the viability of perfused grafts, focused on hepatocellular injury. However, biliary complications are still a leading cause of post-transplant morbidity and the need for re-transplantation. To evaluate the extent of biliary injury during NMP, reliable criteria that consider cholangiocellular damage are needed. In this review, different approaches to assess damage to the biliary tree and the current literature on the possible effects of NMP on the biliary system and biliary injury have been summarized. Additionally, it provides an overview of novel biomarkers and therapeutic strategies that are currently being investigated. Although expectations of NMP to adequately assess biliary injury are high, scant literature is available. There are several biomarkers that can be measured in bile that have been associated with outcomes after transplantation, mainly including pH and electrolytes. However, proper validation of those and other novel markers and investigation of the pathophysiological effect of NMP on the biliary tree is still warranted.
Collapse
|
17
|
Mao XL, Cai Y, Chen YH, Wang Y, Jiang XX, Ye LP, Li SW. Novel Targets and Therapeutic Strategies to Protect Against Hepatic Ischemia Reperfusion Injury. Front Med (Lausanne) 2022; 8:757336. [PMID: 35059411 PMCID: PMC8764312 DOI: 10.3389/fmed.2021.757336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI), a fascinating topic that has drawn a lot of interest in the last few years, is a major complication caused by a variety of clinical situations, such as liver transplantation, severe trauma, vascular surgery, and hemorrhagic shock. The IRI process involves a series of complex events, including mitochondrial deenergization, metabolic acidosis, adenosine-5'-triphosphate depletion, Kupffer cell activation, calcium overload, oxidative stress, and the upregulation of pro-inflammatory cytokine signal transduction. A number of protective strategies have been reported to ameliorate IRI, including pharmacological therapy, ischemic pre-conditioning, ischemic post-conditioning, and machine reperfusion. However, most of these strategies are only at the stage of animal model research at present, and the potential mechanisms and exact therapeutic targets have yet to be clarified. IRI remains a main cause of postoperative liver dysfunction, often leading to postoperative morbidity or even mortality. Very recently, it was reported that the activation of peroxisome proliferator-activated receptor γ (PPARγ), a member of a superfamily of nuclear transcription factors activated by agonists, can attenuate IRI in the liver, and FAM3A has been confirmed to mediate the protective effect of PPARγ in hepatic IRI. In addition, non-coding RNAs, like LncRNAs and miRNAs, have also been reported to play a pivotal role in the liver IRI process. In this review, we presented an overview of the latest advances of treatment strategies and proposed potential mechanisms behind liver IRI. We also highlighted the role of several important molecules (PPARγ, FAM3A, and non-coding RNAs) in protecting against hepatic IRI. Only after achieving a comprehensive understanding of potential mechanisms and targets behind IRI can we effectively ameliorate IRI in the liver and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yi Wang
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiu-Xiu Jiang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Ping Ye
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
18
|
Haque O, Pendexter CA, Wilks BT, Hafiz EOA, Markmann JF, Uygun K, Yeh H, Tessier SN. The effect of blood cells retained in rat livers during static cold storage on viability outcomes during normothermic machine perfusion. Sci Rep 2021; 11:23128. [PMID: 34848781 PMCID: PMC8633375 DOI: 10.1038/s41598-021-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
In transplantation, livers are transported to recipients using static cold storage (SCS), whereby livers are exposed to cold ischemic injury that contribute to post-transplant risk factors. We hypothesized that flushing organs during procurement with cold preservation solutions could influence the number of donor blood cells retained in the allograft thereby exacerbating cold ischemic injury. We present the results of rat livers that underwent 24 h SCS after being flushed with a cold University of Wisconsin (UW) solution versus room temperature (RT) lactated ringers (LR) solution. These results were compared to livers that were not flushed prior to SCS and thoroughly flushed livers without SCS. We used viability and injury metrics collected during normothermic machine perfusion (NMP) and the number of retained peripheral cells (RPCs) measured by histology to compare outcomes. Compared to the cold UW flush group, livers flushed with RT LR had lower resistance, lactate, AST, and ALT at 6 h of NMP. The number of RPCs also had significant positive correlations with resistance, lactate, and potassium levels and a negative correlation with energy charge. In conclusion, livers exposed to cold UW flush prior to SCS appear to perform worse during NMP, compared to RT LR flush.
Collapse
Affiliation(s)
- Omar Haque
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, 51 Blossom St, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Surgery, Division of Transplantation, Center for Transplantation Science, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Casie A Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, 51 Blossom St, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, 51 Blossom St, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ehab O A Hafiz
- Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - James F Markmann
- Department of Surgery, Division of Transplantation, Center for Transplantation Science, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, 51 Blossom St, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Department of Surgery, Division of Transplantation, Center for Transplantation Science, Massachusetts General Hospital, 32 Fruit Street, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, 51 Blossom St, Boston, MA, 02114, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
De Stefano N, Navarro-Tableros V, Roggio D, Calleri A, Rigo F, David E, Gambella A, Bassino D, Amoroso A, Patrono D, Camussi G, Romagnoli R. Human liver stem cell-derived extracellular vesicles reduce injury in a model of normothermic machine perfusion of rat livers previously exposed to a prolonged warm ischemia. Transpl Int 2021; 34:1607-1617. [PMID: 34448268 PMCID: PMC9291857 DOI: 10.1111/tri.13980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023]
Abstract
Livers from donors after circulatory death (DCD) are a promising option to increase the donor pool, but their use is associated with higher complication rate and inferior graft survival. Normothermic machine perfusion (NMP) keeps the graft at 37°C, providing nutrients and oxygen supply. Human liver stem cell‐derived extracellular vesicles (HLSC‐EVs) are able to reduce liver injury and promote regeneration. We investigated the efficacy of a reconditioning strategy with HLSC‐EVs in an experimental model of NMP. Following total hepatectomy, rat livers were divided into 4 groups: (i) healthy livers, (ii) warm ischemic livers (60 min of warm ischemia), (iii) warm ischemic livers treated with 5 × 108 HLSC‐EVs/g‐liver, and (iv) warm ischemic livers treated with a 25 × 108 HLSC‐EVs/g‐liver. NMP lasted 6 h and HLSC‐EVs (Unicyte AG, Germany) were administered within the first 15 min. Compared to controls, HLSC‐EV treatment significantly reduced transaminases release. Moreover, HLSC‐EVs enhanced liver metabolism by promoting phosphate utilization and pH self‐regulation. As compared to controls, the higher dose of HLSC‐EV was associated with significantly higher bile production and lower intrahepatic resistance. Histologically, this group showed reduced necrosis and enhanced proliferation. In conclusion, HLSC‐EV treatment during NMP was feasible and effective in reducing injury in a DCD model with prolonged warm ischemia.
Collapse
Affiliation(s)
- Nicola De Stefano
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Victor Navarro-Tableros
- 2i3T - Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico dell'Università degli Studi di Torino, Scarl. - Molecular Biotechnology Center (MBC), Turin, Italy
| | - Dorotea Roggio
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alberto Calleri
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Federica Rigo
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Ezio David
- Pathology Unit, Molinette Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Molinette Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Daniela Bassino
- S.C. Banca del Sangue e Immunoematologia, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Antonio Amoroso
- Regional Transplantation Center, Piedmont, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Damiano Patrono
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Wu G, Liu Y, Rui C, Zhan S, Wang J, Cai S, Shi X, Ding Y. An oxygenated perfluorocarbon emulsion improves liver graft preservation evaluated in DCD livers of male sprague dawley rats. Transpl Int 2021; 34:2087-2097. [PMID: 34309081 DOI: 10.1111/tri.13996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
The application of perfluorocarbons, which can carry large quantities of oxygen, in organ preservation was limited by their poor solubility in water. A stable form of perfluorocarbon dispersed in suitable buffers is urgently needed. Perfluorocarbon emulsion was designed and characterized with respect to size distribution, rheology, stability, and oxygen-carrying capacity. The state of DCD rat donor livers preserved by the oxygenated perfluorocarbon emulsion was studied after ex vivo reperfusion by using biochemistry, pathology, and immunohistochemistry methods. Perfluorocarbon emulsion was successfully prepared by high-pressure homogenization. Optimized perfluorocarbon emulsion showed nanoscale size distribution, good stability, and higher oxygen loading capacity than that of HTK solution or water. The state of preserved livers after cardiac death rat liver was improved significantly after static cold storage for 48 hours in this oxygenated perfluorocarbon emulsion. The ATP content and down-regulation of HIF-1a expression after preservation of the liver graft by the oxygenated perfluorocarbon emulsion suggested the advantage of adequate oxygen supply for adequate time. This perfluorocarbon emulsion reported here might be considered a promising system for oxygenated donor liver storage by attenuation of hypoxia.
Collapse
Affiliation(s)
- Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | | | - Shanshan Zhan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | | | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| |
Collapse
|
21
|
Heme Oxygenase-1-Modified Bone Marrow Mesenchymal Stem Cells Combined with Normothermic Machine Perfusion Repairs Bile Duct Injury in a Rat Model of DCD Liver Transplantation via Activation of Peribiliary Glands through the Wnt Pathway. Stem Cells Int 2021; 2021:9935370. [PMID: 34285696 PMCID: PMC8275434 DOI: 10.1155/2021/9935370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Livers from donors after circulatory death (DCD) are inevitably exposed to a longer warm ischemic period, which might increase the incidence of postoperative bile duct complications. Bone marrow mesenchymal stem cells (BMMSCs) have tissue repair properties. The present study was aimed at exploring the repair effect of heme oxygenase-1- (HO-1-) modified BMMSCs (HO-1/BMMSCs) combined with normothermic machine perfusion (NMP) on bile duct injury after DCD liver transplantation and at revealing the underlying mechanisms. Rat livers were exposed to in situ warm ischemia for 30 min; then, NMP was performed through the portal vein for 4 h with BMMSCs, HO-1/BMMSCs, or neither before implantation. Obvious bile duct histological damage and liver functional damage were observed postoperatively. In the group treated with HO-1/BMMSCs combined with NMP (HBP group), liver functions and bile duct histology were improved; meanwhile, cell apoptosis was reduced and cell proliferation was active. A large number of regenerative cells appeared at the injured site, and the defective bile duct epithelium was restored. Dilatation of peribiliary glands (PBGs), proliferation of PBG cells, high expression of vascular endothelial growth factor (VEGF), and increased proportion of bile duct progenitor cells with stem/progenitor cells biomarkers were observed. Blocking Wnt signaling significantly inhibited the repair effect of HO-1/BMMSCs on bile duct injury. In conclusion, HO-1/BMMSCs combined with NMP were relevant to the activation of biliary progenitor cells in PBGs which repaired bile duct injury in DCD liver transplantation via the Wnt signaling pathway. Proliferation and differentiation of PBG cells were involved in the renewal of the injured biliary epithelium.
Collapse
|
22
|
Haque O, Raigani S, Rosales I, Carroll C, Coe TM, Baptista S, Yeh H, Uygun K, Delmonico FL, Markmann JF. Thrombolytic Therapy During ex-vivo Normothermic Machine Perfusion of Human Livers Reduces Peribiliary Vascular Plexus Injury. Front Surg 2021; 8:644859. [PMID: 34222314 PMCID: PMC8245781 DOI: 10.3389/fsurg.2021.644859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background: A major limitation in expanding the use of donation after circulatory death (DCD) livers in transplantation is the increased risk of graft failure secondary to ischemic cholangiopathy. Warm ischemia causes thrombosis and injury to the peribiliary vascular plexus (PVP), which is supplied by branches of the hepatic artery, causing higher rates of biliary complications in DCD allografts. Aims/Objectives: We aimed to recondition discarded DCD livers with tissue plasminogen activator (tPA) while on normothermic machine perfusion (NMP) to improve PVP blood flow and reduce biliary injury. Methods: Five discarded DCD human livers underwent 12 h of NMP. Plasminogen was circulated in the base perfusate prior to initiation of perfusion and 1 mg/kg of tPA was administered through the hepatic artery at T = 0.5 h. Two livers were split prior to perfusion (S1, S2), with tPA administered in one lobe, while the other served as a control. The remaining three whole livers (W1-W3) were compared to seven DCD control liver perfusions (C1-C7) with similar hepatocellular and biliary viability criteria. D-dimer levels were measured at T = 1 h to verify efficacy of tPA. Lactate, total bile production, bile pH, and difference in biliary injury scores before and after perfusion were compared between tPA and non-tPA groups using unpaired, Mann-Whitney tests. Results: Average weight-adjusted D-dimer levels were higher in tPA livers in the split and whole-liver model, verifying drug function. There were no differences in perfusion hepatic artery resistance, portal vein resistance, and arterial lactate between tPA livers and non-tPA livers in both the split and whole-liver model. However, when comparing biliary injury between hepatocellular and biliary non-viable whole livers, tPA livers had significantly lower PVP injury scores (0.67 vs. 2.0) and mural stroma (MS) injury scores (1.3 vs. 2.7). Conclusion: This study demonstrates that administration of tPA into DCD livers during NMP can reduce PVP and MS injury. Further studies are necessary to assess the effect of tPA administration on long term biliary complications.
Collapse
Affiliation(s)
- Omar Haque
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Shriners Hospitals for Children, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Siavash Raigani
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Shriners Hospitals for Children, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Ivy Rosales
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Cailah Carroll
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Shriners Hospitals for Children, Boston, MA, United States
| | - Taylor M Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Shriners Hospitals for Children, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Sofia Baptista
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Shriners Hospitals for Children, Boston, MA, United States
| | - Heidi Yeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Shriners Hospitals for Children, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francis L Delmonico
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,New England Donor Services (NEDS), Waltham, MA, United States
| | - James F Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Pool MBF, Hamelink TL, van Goor H, van den Heuvel MC, Leuvenink HGD, Moers C. Prolonged ex-vivo normothermic kidney perfusion: The impact of perfusate composition. PLoS One 2021; 16:e0251595. [PMID: 34003874 PMCID: PMC8130974 DOI: 10.1371/journal.pone.0251595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity for improved graft preservation and objective pre-transplant ex-vivo organ assessment. Currently, a multitude of perfusion solutions exist for renal NMP. This study aimed to evaluate four different perfusion solutions side-by-side and determine the influence of different perfusate compositions on measured renal perfusion parameters. Porcine kidneys and blood were obtained from a slaughterhouse. Kidneys underwent NMP at 37°C for 7 hours, with 4 different perfusion solutions (n = 5 per group). Group 1 consisted of red blood cells (RBCs) and a perfusion solution based on Williams’ Medium E. Group 2 consisted of RBCs, albumin and a balanced electrolyte composition. Group 3 contained RBCs and a medium based on a British clinical NMP solution. Group 4 contained RBCs and a medium used in 24-hour perfusion experiments. NMP flow patterns for solutions 1 and 2 were similar, solutions 3 and 4 showed lower but more stable flow rates. Thiobarbituric acid reactive substances were significantly higher in solution 1 and 4 compared to the other groups. Levels of injury marker N-acetyl-β-D glucosaminidase were significantly lower in solution 2 in comparison with solution 3 and 4. This study illustrates that the perfusate composition during NMP significantly impacts the measured perfusion and injury parameters and thus affects the interpretation of potential viability markers. Further research is required to investigate the individual influences of principal perfusate components to determine the most optimal conditions during NMP and eventually develop universal organ assessment criteria.
Collapse
Affiliation(s)
- Merel B. F. Pool
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Tim L. Hamelink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Haque OJ, Roth EM, Fleishman A, Eckhoff DE, Khwaja K. Long-Term Outcomes of Early Experience in Donation After Circulatory Death Liver Transplantation: Outcomes at 10 Years. Ann Transplant 2021; 26:e930243. [PMID: 33875633 PMCID: PMC8067669 DOI: 10.12659/aot.930243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Donation after circulatory death (DCD) livers remain an underutilized pool of transplantable organs due to concerns of inferior long-term patient survival (PS) and graft survival (GS), which factors greatly into clinician decision-making and patient expectations. MATERIAL AND METHODS This retrospective study used SRTR data to assess 33 429 deceased-donor liver transplants (LT) and compared outcomes between DCD and donation after brain death (DBD) LT recipients in the United States. Data were collected from 2002 to 2008 to obtain 10 years of follow-up (2012-2018) in the era of MELD implementation. Propensity scores for donor type (DCD vs DBD) were estimated using logistic regression, and the association of donor type with 10-year outcomes was evaluated after adjustment using stabilized inverse probability of treatment weights. RESULTS After adjusting for confounders, patient survival for DBD recipients at 10 years was 60.7% versus 57.5% for DCD recipients (P=0.24). Incorporating retransplants, 10-year adjusted patient survival was 60.2% for DBD recipients versus 55.5% for DCD recipients (P=0.07). Adjusted 10-year graft survival for DBD recipients was 56.4% versus 45.4% for DCD recipients (P<0.001). Surprisingly, however, 1 year after LT, DBD and DCD graft failure rates converged to 7.5% over the remaining 9 years. CONCLUSIONS These data reveal inferior 10-year DCD graft survival, but only in the first year after LT, and similar 10-year patient survival in DCD LT recipients compared to DBD recipients. Our results show the stability and longevity of DCD grafts, which should encourage the increased utilization of these livers for transplantation.
Collapse
Affiliation(s)
- Omar J Haque
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Eve M Roth
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aaron Fleishman
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Devin E Eckhoff
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Khalid Khwaja
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Current review of machine perfusion in liver transplantation from the Japanese perspective. Surg Today 2021; 52:359-368. [PMID: 33754175 DOI: 10.1007/s00595-021-02265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
In light of the present evidence, machine perfusion is opening up new horizons in the field of liver transplantation. Although many advances have been made in liver transplantation, organ preservation methods have so far changed very little. Static cold storage is universally used for graft preservation in liver transplantation; however, there is a need for better preservation methods, such as ex vivo machine perfusion, to improve the outcomes by decreasing warm ischemic damage. Based on the findings of basic and clinical trials, hypothermic and normothermic machine perfusion techniques are now commercially available and include the OrganOx metra, Liver Assist, Cleveland NMP device, Organ Care System, and LifePort Liver. Recent clinical trials have provided further evidence for the potential role of normothermic machine perfusion to resuscitate and subsequently improve utilization of marginal or currently discarded livers. Further studies are required to explore the longer-term outcomes, late biliary complications, outcomes in specific high-risk groups, viability biomarkers, optimum and maximum perfusion duration, perfusate composition, and liver-directed therapeutic interventions during normothermic machine perfusion. The use of organs from marginal donors after brain death, such as fatty livers and the livers from elderly donors with multiple comorbidities, may be accepted for machine perfusion in Japan in the near future.
Collapse
|
26
|
Justo I, Nutu A, García-Conde M, Marcacuzco A, Manrique A, Calvo J, García-Sesma Á, Caso Ó, Martín-Arriscado C, Andrés A, Paz E, Jiménez-Romero C. Incidence and risk factors of primary non-function after liver transplantation using grafts from uncontrolled donors after circulatory death. Clin Transplant 2020; 35:e14134. [PMID: 33128296 DOI: 10.1111/ctr.14134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Graft primary non-function (PNF) is the most severe complication after orthotopic liver transplantation (OLT) and is frequently associated with livers from uncontrolled circulatory death (uDCD). METHODS We reviewed retrospectively the incidence, risk factors, and outcome of patients showing PNF after receiving uDCD liver grafts. The series comprises 75 OLT performed during 11 years. RESULTS The incidence of PNF using uDCD livers was 8%. We compared patients who developed PNF (n = 6) vs. patients without PNF (n = 69). Mean pump flow of donors during normothermic regional perfusion (NRP) was significantly lower in PNF (p = .032). Day 1 post-OLT levels of transaminases and the incidence of renal complications and postoperative mortality were also significantly higher in the PNF group, but 5-year patient survival was similar in both groups (66.7% in PNF and 68.5% in non-PNF). All PNF patients underwent re-OLT, and 2 died. PNF incidence has decreased in the last 5-years. Binary logistic regression analysis confirmed final ALT value >4 times the normal value as risk factor for PNF, and median donor pump flow >3700 ml/min as protective effect. CONCLUSIONS Adequate donor pump flow during NRP was a protective.
Collapse
Affiliation(s)
- Iago Justo
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Anisa Nutu
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - María García-Conde
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Alberto Marcacuzco
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Alejandro Manrique
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Jorge Calvo
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Álvaro García-Sesma
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Óscar Caso
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| | - Carmen Martín-Arriscado
- Unit of Statistical Analysis, "Doce de Octubre" Hospital, Complutense University, Madrid, Spain
| | - Amado Andrés
- Service of Nephrology and Kidney Transplantation, "Doce de Octubre" Hospital, Complutense University, Madrid, Spain
| | - Estela Paz
- Service of Immunology, "Doce de Octubre" Hospital, Complutense University, Madrid, Spain
| | - Carlos Jiménez-Romero
- Unit of HPB Surgery and Abdominal Organ Transplantation, Department of Surgery, Faculty of Medicine, Doce de Octubre" Hospital, Instituto de Investigación (imas12), Complutense University, Madrid, Spain
| |
Collapse
|
27
|
Metformin Preconditioning Improves Hepatobiliary Function and Reduces Injury in a Rat Model of Normothermic Machine Perfusion and Orthotopic Transplantation. Transplantation 2020; 104:e271-e280. [PMID: 32150043 PMCID: PMC7439933 DOI: 10.1097/tp.0000000000003216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background. Preconditioning of donor livers before organ retrieval may improve organ quality after transplantation. We investigated whether preconditioning with metformin reduces preservation injury and improves hepatobiliary function in rat donor livers during ex situ normothermic machine perfusion (NMP) and after orthotopic liver transplantation. Methods. Lewis rats were administered metformin via oral gavage, after which a donor hepatectomy was performed followed by a standardized cold storage period of 4 hours. Graft assessment was performed using NMP via double perfusion of the hepatic artery and portal vein. In an additional experiment, rat donor livers preconditioned with metformin were stored on ice for 4 hours and transplanted to confirm postoperative liver function and survival. Data were analyzed and compared with sham-fed controls. Results. Graft assessment using NMP confirmed that preconditioning significantly improved ATP production, markers for hepatobiliary function (total bile production, biliary bilirubin, and bicarbonate), and significantly lowered levels of lactate, glucose, and apoptosis. After orthotopic liver transplantation, metformin preconditioning significantly reduced transaminase levels. Conclusions. Preconditioning with metformin lowers hepatobiliary injury and improves hepatobiliary function in an in situ and ex situ model of rat donor liver transplantation.
Collapse
|
28
|
Ly M, Crawford M, Verran D. Biliary complications in donation after circulatory death liver transplantation: the Australian National Liver Transplantation Unit's experience. ANZ J Surg 2020; 91:445-450. [PMID: 32985774 DOI: 10.1111/ans.16304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Biliary complications are the most common complications of donation after circulatory death (DCD) liver transplantation and the international experience with DCD transplants suggests increased rates of biliary complications compared to donation after brain death transplants. Therefore, it is important to understand factors that are associated with the development of biliary complications within the Australian DCD context in order to inform future practice. The aim of this study is to determine the incidence of biliary complications after DCD liver transplantation at the Australian National Liver Transplantation Unit and identify factors associated with this outcome. METHODS A retrospective analysis of all adult DCD liver transplants at the Australian National Liver Transplantation Unit from 2007 to 2015 was undertaken. The primary outcome measure was the incidence of biliary complications and was censored on 31 December 2016. Recipients were then stratified into groups based on the development of biliary complications and risk factor analysis was performed. RESULTS Biliary complications occurred in 35% of DCD transplants, including seven anastomotic strictures and 10 non-anastomotic strictures. Higher donor risk index scores (P = 0.03), post-transplant portal vein complications (P = 0.042) and peak gamma-glutamyl transferase levels within 7 days post-transplant (P = 0.047) were associated with biliary complications. CONCLUSION Findings from this study demonstrate that biliary complications remain common in DCD liver recipients. Recipients who developed a biliary complication tended to have higher donor risk index, elevated peak gamma-glutamyl transferase levels within 7 days post-transplant or a portal vein complication. The presence of any of these factors should prompt close monitoring for post-transplant biliary complications.
Collapse
Affiliation(s)
- Mark Ly
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael Crawford
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Department of Upper Gastrointestinal Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Deborah Verran
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Claussen F, Gassner JMGV, Moosburner S, Wyrwal D, Nösser M, Tang P, Wegener L, Pohl J, Reutzel-Selke A, Arsenic R, Pratschke J, Sauer IM, Raschzok N. Dual versus single vessel normothermic ex vivo perfusion of rat liver grafts using metamizole for vasodilatation. PLoS One 2020; 15:e0235635. [PMID: 32614897 PMCID: PMC7332079 DOI: 10.1371/journal.pone.0235635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Normothermic ex vivo liver perfusion (NEVLP) is a promising strategy to increase the donor pool in liver transplantation. Small animal models are essential to further investigate questions regarding organ preservation and reconditioning by NEVLP. A dual vessel small animal NEVLP (dNEVLP) model was developed using metamizole as a vasodilator and compared to conventional portovenous single vessel NEVLP (sNEVLP). Methods Livers of male Wistar rats were perfused with erythrocyte-supplemented culture medium for six hours by either dNEVLP via hepatic artery and portal vein or portovenous sNEVLP. dNEVLP was performed either with or without metamizole treatment. Perfusion pressure and flow rates were constantly monitored. Transaminase levels were determined in the perfusate at the start and after three and six hours of perfusion. Bile secretion was monitored and bile LDH and GGT levels were measured hourly. Histopathological analysis was performed using liver and bile duct tissue samples after perfusion. Results Hepatic artery pressure was significantly lower in dNEVLP with metamizole administration. Compared to sNEVLP, dNEVLP with metamizole treatment showed higher bile production, lower levels of transaminases during and after perfusion as well as significantly lower necrosis in liver and bile duct tissue. Biochemical markers of bile duct injury showed the same trend. Conclusion Our miniaturized dNEVLP system enables normothermic dual vessel rat liver perfusion. The administration of metamizole effectively ameliorates arterial vasospasm allowing for six hours of dNEVLP, with superior outcome compared to sNEVLP.
Collapse
Affiliation(s)
- Felix Claussen
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Joseph M. G. V. Gassner
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - David Wyrwal
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Maximilian Nösser
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lara Wegener
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Julian Pohl
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ruza Arsenic
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- * E-mail:
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte | Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
30
|
Ishihara Y, Bochimoto H, Kondoh D, Obara H, Matsuno N. The ultrastructural characteristics of bile canaliculus in porcine liver donated after cardiac death and machine perfusion preservation. PLoS One 2020; 15:e0233917. [PMID: 32470051 PMCID: PMC7259665 DOI: 10.1371/journal.pone.0233917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of each type of machine perfusion preservation (MP) of liver grafts donated after cardiac death on the bile canaliculi of hepatocytes remain unclear. We analyzed the intracellular three-dimensional ultrastructure of the bile canaliculi and hepatocyte endomembrane systems in porcine liver grafts after warm ischemia followed by successive MP with modified University of Wisconsin gluconate solution. Transmission and osmium-maceration scanning electron microscopy revealed that lumen volume of the bile canaliculi decreased after warm ischemia. In liver grafts preserved by hypothermic MP condition, bile canaliculi tended to recover in terms of lumen volume, while their microvilli regressed. In contrast, midthermic MP condition preserved the functional form of the microvilli of the bile canaliculi. Machine perfusion preservation potentially restored the bile canaliculus lumen and alleviated the cessation of cellular endocrine processes due to warm ischemia. In addition, midthermic MP condition prevented the retraction of the microvilli of bile canaliculi, suggesting further mitigation of the damage of the bile canaliculi.
Collapse
Affiliation(s)
- Yo Ishihara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Bochimoto
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Japan
- * E-mail:
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
31
|
|
32
|
Jia J, Nie Y, Li J, Xie H, Zhou L, Yu J, Zheng SS. A Systematic Review and Meta-Analysis of Machine Perfusion vs. Static Cold Storage of Liver Allografts on Liver Transplantation Outcomes: The Future Direction of Graft Preservation. Front Med (Lausanne) 2020; 7:135. [PMID: 32528963 PMCID: PMC7247831 DOI: 10.3389/fmed.2020.00135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Machine perfusion (MP) and static cold storage (CS) are two prevalent methods for liver allograft preservation. However, the preferred method remains controversial. Aim: To conduct a meta-analysis on the impact of MP preservation on liver transplant outcome. Methods: PubMed, EMBASE, and Cochrane Library databases were systematically searched to identify relevant trials comparing the efficacy of MP vs. CS. Odds ratios (OR) and fixed-effects models were calculated to compare the pooled data. Results: Ten prospective cohort studies and two randomized controlled trials (RCTs) were included (MP livers vs. CS livers = 315:489). Machine perfusion demonstrated superior outcomes in posttransplantation aspartate aminotransferase levels compared to CS (P < 0.05). The overall incidence of early allograft dysfunction (EAD) was significantly reduced with MP preservation than CS [OR = 0.46; 95% confidence interval (CI) = 0.31–0.67; P < 0.0001]. The incidence of total biliary complications (OR = 0.53; 95% CI = 0.34–0.83; P = 0.006) and that of ischemic cholangiopathy (OR = 0.39; 95% CI = 0.18–0.85; P = 0.02) were significantly lower in recipients with MP preservation compared with CS preservation. Hypothermic machine perfusion (HMP) but not normothermic machine perfusion (NMP) was found to significantly protect grafts from total biliary complications and ischemic cholangiopathy (P < 0.05). However, no significant differences could be detected utilizing either HMP or NMP in primary nonfunction, hepatic artery thrombosis, postreperfusion syndrome, 1-year patient survival, or 1-year graft survival (P > 0.05). Conclusions: Machine perfusion is superior to CS on improving short-term outcomes for human liver transplantation, with a less clear effect in the longer term. Hypothermic machine perfusion but not NMP conducted significantly protective effects on EAD and biliary complications. Further RCTs are warranted to confirm MP's superiority and applications.
Collapse
Affiliation(s)
- Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Yu Nie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Jianhui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Jun Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
33
|
Haque O, Pendexter CA, Cronin SEJ, Raigani S, de Vries RJ, Yeh H, Markmann JF, Uygun K. Twenty-four hour ex-vivo normothermic machine perfusion in rat livers. TECHNOLOGY 2020; 8:27-36. [PMID: 34307768 PMCID: PMC8300916 DOI: 10.1142/s2339547820500028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ex-vivo liver perfusion (EVLP) is an ideal platform to study liver disease, therapeutic interventions, and pharmacokinetic properties of drugs without any patient risk. Rat livers are an ideal model for EVLP due to less organ quality variability, ease of hepatectomy, well-defined molecular pathways, and relatively low costs compared to large animal or human perfusions. However, the major limitation with rat liver normothermic machine perfusion (NMP) is maintaining physiologic liver function on an ex-vivo machine perfusion system. To address this need, our research demonstrates 24-hour EVLP in rats under normothermic conditions. Early (6 hour) perfusate transaminase levels and oxygen consumption of the liver graft are shown to be good markers of perfusion success and correlate with viable 24-hour post-perfusion histology. Finally, we address overcoming challenges in long-term rat liver perfusions such as rising intrahepatic pressures and contamination, and offer future directions necessary to build upon our work.
Collapse
Affiliation(s)
- Omar Haque
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Casie A Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Stephanie E J Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Reiner J de Vries
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
- Department of Surgery, Amsterdam University Medical Centers - AMC, Amsterdam, the Netherlands
| | - Heidi Yeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
34
|
Bhogal RH, Mirza DF, Afford SC, Mergental H. Biomarkers of Liver Injury during Transplantation in an Era of Machine Perfusion. Int J Mol Sci 2020; 21:ijms21051578. [PMID: 32106626 PMCID: PMC7084877 DOI: 10.3390/ijms21051578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Liver ischaemia–reperfusion injury (IRI) is an intrinsic part of the transplantation process and damages the parenchymal cells of the liver including hepatocytes, endothelial cells and cholangiocytes. Many biomarkers of IRI have been described over the past two decades that have attempted to quantify the extent of IRI involving different hepatic cellular compartments, with the aim to allow clinicians to predict the suitability of donor livers for transplantation. The advent of machine perfusion has added an additional layer of complexity to this field and has forced researchers to re-evaluate the utility of IRI biomarkers in different machine preservation techniques. In this review, we summarise the current understanding of liver IRI biomarkers and discuss them in the context of machine perfusion.
Collapse
Affiliation(s)
- Ricky H. Bhogal
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- The Royal Marsden Hospital NHS Foundation Trust, London SW3 6JJ, UK
- Correspondence: (R.H.B.); (H.M.); Tel.: +44-20-7468-3000 (R.H.B.); +44-121-371-4638 (H.M.)
| | - Darius F. Mirza
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Simon C. Afford
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hynek Mergental
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Correspondence: (R.H.B.); (H.M.); Tel.: +44-20-7468-3000 (R.H.B.); +44-121-371-4638 (H.M.)
| |
Collapse
|
35
|
Favorable Outcomes After Liver Transplantation With Normothermic Regional Perfusion From Donors After Circulatory Death: A Single-center Experience. Transplantation 2019; 103:938-943. [PMID: 30063694 DOI: 10.1097/tp.0000000000002391] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Controlled donation after circulatory death (cDCD) has been associated with a high incidence of ischemic cholangiopathy and other perioperative complications. In an attempt to avoid these complications, we implemented an active protocol of cDCD liver transplant (LT) with normothermic regional perfusion (NRP) preservation. METHODS This is a descriptive analysis of data collected from a prospective date base of cDCD LT preserved with NRP from January 2015 to June 2017 with a minimum follow up of 9 months. RESULTS Fifty-seven potential cDCD donors were connected to the NRP system. Of these, 46 livers were transplanted over a 30-month period (80% liver recovery rate). The median posttransplant peak in alanine transaminase was 1136 U/L (220-6683 U/L). Seven (15%) patients presented postreperfusion syndrome and 11 (23%) showed early allograft dysfunction. No cases of ischemic cholangiopathy were diagnosed, and no graft loss was observed over a medium follow-up period of 19 months. Of note, 13 donors were older than 65 years, achieving comparable perioperative and midterm results to younger donors. CONCLUSIONS As far as we know, this represents the largest published series of cDCD LT with NRP preservation. Our results demonstrate that cDCD liver grafts preserved with NRP appear far superior to those obtained by the conventional rapid recovery technique.
Collapse
|
36
|
Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model. J Clin Med 2019; 8:jcm8111918. [PMID: 31717387 PMCID: PMC6912657 DOI: 10.3390/jcm8111918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Ex-situ machine perfusion (MP) has been increasingly used to enhance liver quality in different settings. Small animal models can help to implement this procedure. As most normothermic MP (NMP) models employ sub-physiological levels of oxygen delivery (DO2), the aim of this study was to investigate the effectiveness and safety of different DO2, using human red blood cells (RBCs) as oxygen carriers on metabolic recovery in a rat model of NMP. Four experimental groups (n = 5 each) consisted of (1) native (untreated/control), (2) liver static cold storage (SCS) 30 min without NMP, (3) SCS followed by 120 min of NMP with Dulbecco-Modified-Eagle-Medium as perfusate (DMEM), and (4) similar to group 3, but perfusion fluid was added with human RBCs (hematocrit 15%) (BLOOD). Compared to DMEM, the BLOOD group showed increased liver DO2 (p = 0.008) and oxygen consumption ( V O ˙ 2) (p < 0.001); lactate clearance (p < 0.001), potassium (p < 0.001), and glucose (p = 0.029) uptake were enhanced. ATP levels were likewise higher in BLOOD relative to DMEM (p = 0.031). V O ˙ 2 and DO2 were highly correlated (p < 0.001). Consistently, the main metabolic parameters were directly correlated with DO2 and V O ˙ 2. No human RBC related damage was detected. In conclusion, an optimized DO2 significantly reduces hypoxic damage-related effects occurring during NMP. Human RBCs can be safely used as oxygen carriers.
Collapse
|
37
|
Raigani S, Markmann JF, Yeh H. Rehabilitation of Discarded Steatotic Livers Using Ex Situ Normothermic Machine Perfusion: A Future Source of Livers for Transplantation. Liver Transpl 2019; 25:991-992. [PMID: 31077626 DOI: 10.1002/lt.25490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Siavash Raigani
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Scheuermann U, Zhu M, Song M, Yerxa J, Gao Q, Davis RP, Zhang M, Parker W, Hartwig MG, Kwun J, Brennan TV, Lee J, Barbas AS. Damage-Associated Molecular Patterns Induce Inflammatory Injury During Machine Preservation of the Liver: Potential Targets to Enhance a Promising Technology. Liver Transpl 2019; 25:610-626. [PMID: 30734488 PMCID: PMC6593678 DOI: 10.1002/lt.25429] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Machine preservation (MP) has emerged as a promising technology in liver transplantation, but the cellular processes occurring during MP have not been characterized. Recent studies have noted the presence of inflammatory molecules generated during MP. We hypothesized that there is a metabolism-dependent accumulation of damage-associated molecular patterns (DAMPs) and inflammatory cytokines during MP and that these molecules provoke inflammation in the graft. To stratify groups by metabolic rate, MP was performed on rat livers from standard donors at 3 different temperatures: room temperature (RT), subnormothermic (30°C), and normothermic (37°C). Static cold storage at 4°C was included as a reference group. Following a 4-hour preservation period, graft reperfusion was performed ex vivo at 37°C (n = 6 for all groups). Levels of DAMPs and inflammatory cytokines were measured, and their biological activity was assessed by determining toll-like receptor (TLR) stimulation, inflammatory gene expression, and activation of cell death pathways. There was a time-dependent increase in levels of DAMPs during MP with high-mobility group box 1 and extracellular DNA levels increasing for all groups (P < 0.05, 30 versus 240 minutes). Tumor necrosis factor α levels in the perfusate also increased during MP for all groups (P < 0.05, 30 minutes versus 240 minutes). Levels of inflammatory molecules correlated with increased activation of TLRs (TLR3, P = 0.02, normothermic machine preservation [MP37] versus machine preservation at room temperature [MPRT]; TLR9, P = 0.02, MP37 versus MPRT). Priming of the NLRP3 inflammasome and activation of cell death pathways were reduced in grafts preserved by MP at room temperature. In conclusion, inflammatory molecules produced during MP have a biological impact on the graft. Therapies to attenuate DAMP-mediated inflammation during MP may further enhance this promising technology.
Collapse
Affiliation(s)
| | - Minghua Zhu
- Department of SurgeryDuke University Medical CenterDurhamNC
| | - Mingqing Song
- Department of SurgeryDuke University Medical CenterDurhamNC
| | - John Yerxa
- Department of SurgeryDuke University Medical CenterDurhamNC
| | - Qimeng Gao
- Department of SurgeryDuke University Medical CenterDurhamNC
| | | | - Min Zhang
- Department of SurgeryDuke University Medical CenterDurhamNC
| | - William Parker
- Department of SurgeryDuke University Medical CenterDurhamNC
| | | | - Jean Kwun
- Department of SurgeryDuke University Medical CenterDurhamNC
| | - Todd V. Brennan
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCA
| | - Jaewoo Lee
- Department of SurgeryDuke University Medical CenterDurhamNC
| | | |
Collapse
|
39
|
Tchilikidi KY. Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion. World J Gastrointest Surg 2019; 11:126-142. [PMID: 31057698 PMCID: PMC6478595 DOI: 10.4240/wjgs.v11.i3.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
The growing demand for donor organs requires measures to expand donor pool. Those include extended criteria donors, such as elderly people, steatotic livers, donation after cardiac death, etc. Static cold storage to reduce metabolic requirements developed by Collins in late 1960s is the mainstay and the golden standard for donated organ protection. Hypothermic machine perfusion provides dynamic organ preservation at 4°C with protracted infusion of metabolic substrates to the graft during the ex vivo period. It has been used instead of static cold storage or after it as short perfusion in transplant center. Normothermic machine perfusion (NMP) delivers oxygen, and nutrition at physiological temperature mimicking regular environment in order to support cellular function. This would minimize effects of ischemia/reperfusion injury. Potentially, NMP may help to estimate graft functionality before implantation into a recipient. Clinical studies demonstrated at least its non-inferiority or better outcomes vs static cold storage. Regular grafts donated after brain death could be safely preserved with convenient static cold storage. Except for prolonged ischemia time where hypothermic machine perfusion started in transplant center could be estimated to provide possible positive reconditioning effect. Use of hypothermic machine perfusion in regular donation instead of static cold storage or in extended criteria donors requires further investigation. Multicenter randomized clinical trial supposed to be completed in December 2021. Extended criteria donors need additional measures for graft storage and assessment until its implantation. NMP is actively evaluating promising method for this purpose. Future studies are necessary for precise estimation and confirmation to issue clinical practice recommendations.
Collapse
|
40
|
Gassner JMGV, Nösser M, Moosburner S, Horner R, Tang P, Wegener L, Wyrwal D, Claussen F, Arsenic R, Pratschke J, Sauer IM, Raschzok N. Improvement of Normothermic Ex Vivo Machine Perfusion of Rat Liver Grafts by Dialysis and Kupffer Cell Inhibition With Glycine. Liver Transpl 2019; 25:275-287. [PMID: 30341973 DOI: 10.1002/lt.25360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Normothermic ex vivo liver machine perfusion might be a superior preservation strategy for liver grafts from extended criteria donors. However, standardized small animal models are not available for basic research on machine perfusion of liver grafts. A laboratory-scaled perfusion system was developed consisting of a custom-made perfusion chamber, a pressure-controlled roller pump, and an oxygenator. Male Wistar rat livers were perfused via the portal vein for 6 hours using oxygenated culture medium supplemented with rat erythrocytes. A separate circuit was connected via a dialysis membrane to the main circuit for plasma volume expansion. Glycine was added to the flush solution, the perfusate, and the perfusion circuit. Portal pressure and transaminase release were stable over the perfusion period. Dialysis significantly decreased the potassium concentration of the perfusate and led to significantly higher bile and total urea production. Hematoxylin-eosin staining and immunostaining for single-stranded DNA and activated caspase 3 showed less sinusoidal dilatation and tissue damage in livers treated with dialysis and glycine. Although Kupffer cells were preserved, tumor necrosis factor α messenger RNA levels were significantly decreased by both treatments. For proof of concept, the optimized perfusion protocol was tested with donation after circulatory death (DCD) grafts, resulting in significantly lower transaminase release into the perfusate and preserved liver architecture compared with baseline perfusion. In conclusion, our laboratory-scaled normothermic portovenous ex vivo liver perfusion system enables rat liver preservation for 6 hours. Both dialysis and glycine treatment were shown to be synergistic for preservation of the integrity of normal and DCD liver grafts.
Collapse
Affiliation(s)
- Joseph M G V Gassner
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Maximilian Nösser
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Simon Moosburner
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Rosa Horner
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Peter Tang
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Lara Wegener
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - David Wyrwal
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Felix Claussen
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Ruza Arsenic
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Igor M Sauer
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Nathanael Raschzok
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum.,Charité Clinician Scientist Program, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
41
|
Comparison of BQ123, Epoprostenol, and Verapamil as Vasodilators During Normothermic Ex Vivo Liver Machine Perfusion. Transplantation 2018; 102:601-608. [PMID: 29189484 DOI: 10.1097/tp.0000000000002021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The optimal vasodilator to avoid hepatic artery vasospasm during normothermic ex vivo liver perfusion (NEVLP) is yet to be determined. We compared safety and efficacy of BQ123 (endothelin1 antagonist), epoprostenol (prostacyclin analogue), and verapamil (calcium channel antagonist). METHODS Livers from porcine heart beating donors were perfused for 3 hours and transplanted into recipient pigs. Four groups were compared: group 1, livers perfused with a dose of 1.25 mg of BQ123 at baseline and at 2 hours of perfusion; group 2, epoprostenol at a continuous infusion of 4 mg/h; group 3, verapamil 2.5 mg at baseline and at 2 hours of perfusion; group 4, no vasodilator used during ex vivo perfusion. Liver injury and function were assessed during perfusion, and daily posttransplantation until postoperative day (POD) 3. All groups were compared with a cold storage group for postoperative graft function. RESULTS Hepatic artery flow during NEVLP was significantly higher in BQ123 compared with verapamil, epoprostenol, and no vasodilator-treated livers. Aspartate aminotransferase levels were significantly lower with BQ123 and verapamil compared with epoprostenol and control group during perfusion. Peak aspartate aminotransferase levels were lower in pigs receiving BQ123 and verapamil perfused grafts compared with epoprostenol and control group. International Normalized Ratio, alkaline phosphatase, and total bilirubin levels were lower in the BQ123 and verapamil groups compared to epoprostenol group. Cold storage group had increased markers of ischemia reperfusion injury and slower graft function recovery compared to machine perfused grafts. CONCLUSION The use of BQ123, epoprostenol, and verapamil during NEVLP is safe. Livers perfused with BQ123 and verapamil have higher hepatic artery flow and reduced hepatocyte injury during perfusion compared with epoprostenol. Hepatic artery flow is significantly reduced in the absence of vasodilators during NEVLP.
Collapse
|
42
|
Zhu M, Barbas AS, Lin L, Scheuermann U, Bishawi M, Brennan TV. Mitochondria Released by Apoptotic Cell Death Initiate Innate Immune Responses. Immunohorizons 2018; 2:384-397. [PMID: 30847435 PMCID: PMC6400482 DOI: 10.4049/immunohorizons.1800063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In solid organ transplantation, cell death arising from ischemia/reperfusion leads to the release of several damage-associated molecular patterns derived from mitochondria. Mitochondrial damage-associated molecular patterns (mtDAMPs) initiate proinflammatory responses, but it remains unknown whether the mode of cell death affects the inflammatory properties of mitochondria. Murine and human cell lines induced to selectively undergo apoptosis and necroptosis were used to examine the extracellular release of mitochondria during programmed cell death. Mitochondria purified from healthy, apoptotic, and necroptotic cells were used to stimulate macrophage inflammasome responses in vitro and neutrophil chemotaxis in vivo. Inhibition of specific mtDAMPs was performed to identify those responsible for macrophage inflammasome activation. A rat liver transplant model was used to identify apoptotic and necroptotic cell death in graft tissue following ischemia/reperfusion. Both apoptotic and necroptotic cell death occur in parallel in graft tissue. Apoptotic cells released more mitochondria than necroptotic cells. Moreover, mitochondria from apoptotic cells were significantly more inflammatory in terms of macrophage inflammasome activation and neutrophil recruitment. Inhibition of cellular synthesis of cardiolipin, a mitochondria-specific lipid and mtDAMP, significantly reduced the inflammasome-activating properties of apoptosis-derived mitochondria. Mitochondria derived from apoptotic cells are potent activators of innate immune responses, whereas mitochondria derived from healthy or necroptotic cells are significantly less inflammatory. Cardiolipin appears to be a key mtDAMP-regulating inflammasome activation by mitochondria. Methods of inhibiting apoptotic cell death in transplant grafts may be beneficial for reducing graft inflammation and transplant allosensitization.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Liwen Lin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Uwe Scheuermann
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Muath Bishawi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Todd V. Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
43
|
Schlegel A, Dutkowski P. Impact of Machine Perfusion on Biliary Complications after Liver Transplantation. Int J Mol Sci 2018; 19:3567. [PMID: 30424553 PMCID: PMC6274934 DOI: 10.3390/ijms19113567] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
We describe in this review the different types of injuries caused to the biliary tree after liver transplantation. Furthermore, we explain underlying mechanisms and why oxygenated perfusion concepts could not only protect livers, but also repair high-risk grafts to prevent severe biliary complications and graft loss. Accordingly, we summarize experimental studies and clinical applications of machine liver perfusion with a focus on biliary complications after liver transplantation. Key points: (1) Acute inflammation with subsequent chronic ongoing liver inflammation and injury are the main triggers for cholangiocyte injury and biliary tree transformation, including non-anastomotic strictures; (2) Hypothermic oxygenated perfusion (HOPE) protects livers from initial oxidative injury at normothermic reperfusion after liver transplantation. This is a unique feature of a cold oxygenation approach, which is effective also end-ischemically, e.g., after cold storage, due to mitochondrial repair mechanisms. In contrast, normothermic oxygenated perfusion concepts protect by reducing cold ischemia, and are therefore most beneficial when applied instead of cold storage; (3) Due to less downstream activation of cholangiocytes, hypothermic oxygenated perfusion also significantly reduces the development of biliary strictures after liver transplantation.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Surgery & Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland.
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham B15 2TH, UK.
- NIHR Liver Biomedical Research Unit, University Hospitals Birmingham, Birmingham B15 2TH, UK.
| | - Philipp Dutkowski
- Department of Surgery & Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
44
|
A Comparative Study of Single and Dual Perfusion During End-ischemic Subnormothermic Liver Machine Preservation. Transplant Direct 2018; 4:e400. [PMID: 30534591 PMCID: PMC6233661 DOI: 10.1097/txd.0000000000000840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Background It remains controversial if arterial perfusion in addition to portal vein perfusion during machine preservation improves liver graft quality. Comparative studies using both techniques are lacking. We studied the impact of using single or dual machine perfusion of donation after circulatory death rat livers. In addition, we analyzed the effect of pulsatile versus continuous arterial flow. Methods Donation after circulatory death rat livers (n = 18) were preserved by 6 hours cold storage, followed by 1 hour subnormothermic machine perfusion (20°C, pressure of 40/5 mm Hg) and 2 hours ex vivo warm reperfusion (37°C, pressure of 80/11 mm Hg, 9% whole blood). Machine preservation was either through single portal vein perfusion (SP), dual pulsatile (DPP), or dual continuous perfusion (DCP) of the portal vein and hepatic artery. Hydrodynamics, liver function tests, histopathology, and expression of endothelial specific genes were assessed during 2 hours warm reperfusion. Results At the end of reperfusion, arterial flow in DPP livers tended to be higher compared to DCP and SP grafts. However, this difference was not significant nor was better flow associated with better outcome. No differences in bile production or alanine aminotransferase levels were observed. SP livers had significantly lower lactate compared to DCP, but not DPP livers. Levels of Caspase-3 and tumor necrosis factor-α were similar between the groups. Expression of endothelial genes Krüppel-like-factor 2 and endothelial nitric oxide synthase tended to be higher in dual perfused livers, but no histological evidence of better preservation of the biliary endothelium or vasculature of the hepatic artery was observed. Conclusions This study shows comparable outcomes after using a dual or single perfusion approach during end-ischemic subnormothermic liver machine preservation.
Collapse
|
45
|
Jayant K, Reccia I, Shapiro AMJ. Normothermic ex-vivo liver perfusion: where do we stand and where to reach? Expert Rev Gastroenterol Hepatol 2018; 12:1045-1058. [PMID: 30064278 DOI: 10.1080/17474124.2018.1505499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays liver transplantation is considered as the treatment of choice, however, the scarcity of suitable donor organs limits the delivery of care to the end-stage liver disease patients leading to the death while on the waiting list. The advent of ex-situ normothermic machine perfusion (NMP) has emerged as an alternative to the standard organ preservation technique, static cold storage (SCS). The newer technique promises to not only restore the normal metabolic activity but also attempt to recondition the marginal livers back to the pristine state, which are otherwise more susceptible to ischemic injury and foster the poor post-transplant outcomes. Areas covered: An extensive search of all the published literature describing the role of NMP based device in liver transplantation as an alternative to SCS was made on MEDLINE, EMBASE, Cochrane, BIOSIS, Crossref, Scopus databases and clinical trial registry on 10 May 2018. Expert commentary: The main tenet of NMP is the establishment of the physiological milieu, which permits aerobic metabolism to continue through out the period of preservation and limits the effects of ischemia-reperfusion (I/R) injury. In addition, by assessing the various metabolic and synthetic parameters the viability and suitability of donor livers for transplantation can be determined. This important technological advancement has scored satisfactorily on the safety and efficacy parameters in preliminary clinical studies. The present review suggests that NMP can offer the opportunity to assess and safely utilize the marginal donor livers if deemed appropriate for the transplantation. However, ongoing trials will determine its full potential and further adoption.
Collapse
Affiliation(s)
- Kumar Jayant
- a Department of Surgery and Cancer , Imperial College London , London , UK
| | - Isabella Reccia
- a Department of Surgery and Cancer , Imperial College London , London , UK
| | | |
Collapse
|
46
|
Kim J, Zimmerman M, Hong J. Emerging Innovations in Liver Preservation and Resuscitation. Transplant Proc 2018; 50:2308-2316. [DOI: 10.1016/j.transproceed.2018.03.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
|
47
|
Akateh C, Beal EW, Whitson BA, Black SM. Normothermic Ex-vivo Liver Perfusion and the Clinical Implications for Liver Transplantation. J Clin Transl Hepatol 2018; 6:276-282. [PMID: 30271739 PMCID: PMC6160298 DOI: 10.14218/jcth.2017.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Despite significant improvements in outcomes after liver transplantation, many patients continue to die on the waiting list, while awaiting an available organ for transplantation. Organ shortage is not only due to an inadequate number of available organs, but also the inability to adequately assess and evaluate these organs prior to transplantation. Over the last few decades, ex-vivo perfusion of the liver has emerged as a useful technique for both improved organ preservation and assessment of organs prior to transplantation. Large animal studies have shown the superiority of ex-vivo perfusion over cold static storage. However, these studies have not, necessarily, been translatable to human livers. Small animal studies have been essential in understanding and improving this technology. Similarly, these results have yet to be translated into clinical use. A few Phase 1 clinical trials have shown promise and confirmed the viability of this technology. However, more robust studies are needed before ex-vivo liver perfusion can be widely accepted as the new clinical standard of organ preservation. Here, we aimed to review all relevant large and small animal research, as well as human liver studies on normothermic ex-vivo perfusion, and to identify areas of deficiency and opportunities for future research endeavors.
Collapse
Affiliation(s)
- Clifford Akateh
- General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- *Correspondence to: Clifford Akateh, General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Room 654, Columbus, OH-43210-1267, USA. Tel: +1-614-293-8704, Fax: +1-614-293-4063, E-mail:
| | - Eliza W. Beal
- General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Bryan A. Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sylvester M. Black
- Division of Transplant Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
48
|
Jayant K, Reccia I, Virdis F, Shapiro AMJ. The Role of Normothermic Perfusion in Liver Transplantation (TRaNsIT Study): A Systematic Review of Preliminary Studies. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2018; 2018:6360423. [PMID: 29887782 PMCID: PMC5985064 DOI: 10.1155/2018/6360423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The success of liver transplantation has been limited by the unavailability of suitable donor livers. The current organ preservation technique, i.e., static cold storage (SCS), is not suitable for marginal organs. Alternatively, normothermic machine perfusion (NMP) promises to recreate the physiological environment and hence holds promise for the better organ preservation. The objective of this systematic review is to provide an overview of the safety, benefits, and insight into the other potential useful parameters of NMP in the liver preservation. MATERIAL AND METHODS We searched the current literature following registration in the International Prospective Register of Systematic Reviews (PROSPERO) with registration number CRD42018086034 for prospective trials comparing the role of NMP device to SCS in liver transplant by searching the PubMed, EMBASE, Cochrane, BIOSIS, Crossref, and Scopus databases and clinical trial registry. RESULTS The literature search identified five prospective clinical trials (four being early phase single institutional and single randomized multi-institutional) comparing 187 donor livers on NMP device to 273 donor livers on SCS. The primary outcome of interest was to assess the safety and graft survival at day 30 after transplant following NMP of the donor liver. Secondary outcomes included were early allograft dysfunction (EAD) in the first seven days; serum measures of liver functions as bilirubin, aspartate aminotransferase (AST), alanine amino transferase (ALT), alkaline phosphatase (ALP), and international normalized ratio (INR) on days 1-7; major complications as defined by a Clavien-Dindo score ≥ 3; and patient and graft survival and biliary complications at six months. The peaked median AST level between days 1 and 7 in the five trials was 417-1252 U/L (range 84-15009 U/L) while on NMP and 839-1474 U/L (range 153-8786 U/L) in SCS group. The median bilirubin level on day 7 ranged within 25-79 µmol/L (range 8-344 µmol/l) and 30-47.53 µmol/l (range 9-340 µmol/l) in NMP and SCS groups, respectively. A single case of PNF was reported in NMP group in the randomized trial while none of the other preliminary studies reported any in either group. There was intertrial variability in EAD which ranged within 15-56% in NMP group while being within 23-37% in SCS group. Biliary complications observed in NMP group ranged from 0 to 20%. Single device malfunction was reported in randomized controlled trial leading to renouncement of transplant while none of the other trials reported any machine failure, although two user related device errors inadvertent were reported. CONCLUSION This review outlines that NMP not only demonstrated safety and efficacy but also provided the favourable environment of organ preservation, repair, and viability assessment to donor liver prior to the transplantation with low rate of posttransplantation complication as PNF, EAD, and biliary complication; however further studies are needed to broaden our horizon.
Collapse
Affiliation(s)
- Kumar Jayant
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Isabella Reccia
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | | |
Collapse
|
49
|
Boteon YL, Afford SC, Mergental H. Pushing the Limits: Machine Preservation of the Liver as a Tool to Recondition High-Risk Grafts. CURRENT TRANSPLANTATION REPORTS 2018; 5:113-120. [PMID: 29774176 PMCID: PMC5945712 DOI: 10.1007/s40472-018-0188-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE REVIEW Machine perfusion (MP) is a novel technology recently introduced in liver transplantation, redefining the current practice of organ preservation and pushing the limits of high-risk liver utilisation. This review highlights the key benefits of machine perfusion over conventional static cold storage (SCS), demonstrated in human liver research and clinical transplants. RECENT FINDINGS The first clinical trials have demonstrated both safety and feasibility of MP. The most recent transplant series and result from a randomised trial suggest the technology is superior to SCS. The key benefits include extended period of organ preservation, decreased incidence of early allograft dysfunction and reduction of biliary complications. Normothermic liver perfusion allows viability testing to guide transplantability of the highest-risk organs. This technology also provides opportunities for therapeutic interventions to improve liver function and quality in organs that are currently declined for clinical use. SUMMARY Machine perfusion is likely to transform the liver preservation pathway and to improve utilisation of high-risk grafts.
Collapse
Affiliation(s)
- Yuri L. Boteon
- Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH UK
- National Institute for Health Research, Birmingham Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simon C. Afford
- National Institute for Health Research, Birmingham Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH UK
- National Institute for Health Research, Birmingham Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
50
|
|