1
|
Chouaib B, Desoutter A, Cuisinier F, Collart-Dutilleul PY. Dental Pulp Stem Cell Conditioned Medium Enhance Osteoblastic Differentiation and Bone Regeneration. Stem Cell Rev Rep 2025; 21:477-490. [PMID: 39514179 DOI: 10.1007/s12015-024-10823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cell-free approaches, utilizing mesenchymal stem cell secretome, have promising prospects in various fields of regenerative medicine. In this study, we examined in vitro and in vivo the potential of dental pulp stem cell-conditioned medium (DPSC-CM) for bone regeneration. METHODS The secretome of undifferentiated stem cells from dental pulp were collected, and the effects of this DPSC-CM were assessed for osteodifferentiation of osteoblast-like cells (MG-63) and osteoblasts deriving from DPSC. Cell proliferation, alkaline phosphatase (ALP) activity, gene expression of Runt-related transcription factor 2 (Runx2), Bone Sialoprotein (BSP), Osteocalcin (OCN), and extracellular matrix mineralization were evaluated. The rat caudal vertebrae critical size defect model was to investigate the effect of DPSC-CM in vivo. RESULTS Results showed that DPSC-CM induced cell growth, and increased ALP activity and the expression of key marker genes at an early stage of osteoblastic differentiation compared to control. A rat bone defect model was used to illustrate the effect of DPSC-CM in vivo. The bone density within the defects were improved using conditioned medium, even though there was no significant difference between the control and DPSC-CM groups. The analysis of DPSC-CM by human growth factor antibody array revealed the presence of several factors involved in osteogenesis. CONCLUSION Taken together, these findings indicate that DPSC-CM is a promising therapeutic candidate for bone regenerative therapy, accelerating the maturation of osteoblastic cells. And even though safety and efficiency of DPSC-CM have to be confirmed in preclinical studies, these results represent a first step toward clinical application.
Collapse
Affiliation(s)
| | | | - Frédéric Cuisinier
- LBN, Univ. Montpellier, Montpellier, France
- Faculty of Dentistry, Univ. Montpellier, Montpellier, France
- Service Odontologie, CHU de Montpellier, Montpellier, France
| | - Pierre-Yves Collart-Dutilleul
- LBN, Univ. Montpellier, Montpellier, France.
- Faculty of Dentistry, Univ. Montpellier, Montpellier, France.
- Service Odontologie, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Younes R, Issa Y, Jdaa N, Chouaib B, Brugioti V, Challuau D, Raoul C, Scamps F, Cuisinier F, Hilaire C. The Secretome of Human Dental Pulp Stem Cells and Its Components GDF15 and HB-EGF Protect Amyotrophic Lateral Sclerosis Motoneurons against Death. Biomedicines 2023; 11:2152. [PMID: 37626649 PMCID: PMC10452672 DOI: 10.3390/biomedicines11082152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable paralytic disorder caused by the progressive death of upper and lower motoneurons. Although numerous strategies have been developed to slow disease progression and improve life quality, to date only a few therapeutic treatments are available with still unsatisfactory therapeutic benefits. The secretome of dental pulp stem cells (DPSCs) contains numerous neurotrophic factors that could promote motoneuron survival. Accordingly, DPSCs confer neuroprotective benefits to the SOD1G93A mouse model of ALS. However, the mode of action of DPSC secretome on motoneurons remains largely unknown. Here, we used conditioned medium of human DPSCs (DPSCs-CM) and assessed its effect on survival, axonal length, and electrical activity of cultured wildtype and SOD1G93A motoneurons. To further understand the role of individual factors secreted by DPSCs and to circumvent the secretome variability bias, we focused on GDF15 and HB-EGF whose neuroprotective properties remain elusive in the ALS pathogenic context. DPSCs-CM rescues motoneurons from trophic factor deprivation-induced death, promotes axon outgrowth of wildtype but not SOD1G93A mutant motoneurons, and has no impact on the spontaneous electrical activity of wildtype or mutant motoneurons. Both GDF15 and HB-EGF protect SOD1G93A motoneurons against nitric oxide-induced death, but not against death induced by trophic factor deprivation. GDF15 and HB-EGF receptors were found to be expressed in the spinal cord, with a two-fold increase in expression for the GDF15 low-affinity receptor in SOD1G93A mice. Therefore, the secretome of DPSCs appears as a new potential therapeutic candidate for ALS.
Collapse
Affiliation(s)
- Richard Younes
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
- LBN, University of Montpellier, 34193 Montpellier, France
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon
| | - Youssef Issa
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | - Nadia Jdaa
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | - Batoul Chouaib
- LBN, University of Montpellier, 34193 Montpellier, France
- Human Health Department, IRSN, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | | | - Désiré Challuau
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| | | | | | - Cécile Hilaire
- INM, University of Montpellier, INSERM, 34295 Montpellier, France
| |
Collapse
|
3
|
Krekic S, Mero M, Kuhl M, Balasubramanian K, Dér A, Heiner Z. Photoactive Yellow Protein Adsorption at Hydrated Polyethyleneimine and Poly-l-Glutamic Acid Interfaces. Molecules 2023; 28:molecules28104077. [PMID: 37241818 DOI: 10.3390/molecules28104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chiral and achiral vibrational sum-frequency generation (VSFG) spectroscopy was performed in the 1400-1700 and 2800-3800 cm-1 range to study the interfacial structure of photoactive yellow protein (PYP) adsorbed on polyethyleneimine (PEI) and poly-l-glutamic acid (PGA) surfaces. Nanometer-thick polyelectrolyte layers served as the substrate for PYP adsorption, with 6.5-pair layers providing the most homogeneous surfaces. When the topmost material was PGA, it acquired a random coil structure with a small number of β2-fibrils. Upon adsorption on oppositely charged surfaces, PYP yielded similar achiral spectra. However, the VSFG signal intensity increased for PGA surfaces with a concomitant redshift of the chiral Cα-H and N-H stretching bands, suggesting increased adsorption for PGA compared to PEI. At low wavenumbers, both the backbone and the side chains of PYP induced drastic changes to all measured chiral and achiral VSFG spectra. Decreasing ambient humidity led to the loss of tertiary structure with a re-orientation of α-helixes, evidenced by a strongly blue-shifted chiral amide I band of the β-sheet structure with a shoulder at 1654 cm-1. Our observations indicate that chiral VSFG spectroscopy is not only capable of determining the main type of secondary structure of PYP, i.e., β-scaffold, but is also sensitive to tertiary protein structure.
Collapse
Affiliation(s)
- Szilvia Krekic
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Mark Mero
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Michel Kuhl
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Kannan Balasubramanian
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - András Dér
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
| | - Zsuzsanna Heiner
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
4
|
Malthiery E, Chouaib B, Hernandez-Lopez AM, Martin M, Gergely C, Torres JH, Cuisinier FJ, Collart-Dutilleul PY. Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci 2021; 36:437-445. [PMID: 32621128 DOI: 10.1007/s10103-020-03092-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Photobiomodulation (PBM) has been shown to improve cell proliferation and cell migration. Many cell types have been investigated, with most studies using deep penetrating red light irradiation. Considering the interest of surface biostimulation of oral mesenchymal cells after surgical wound, the present study aimed to assess green light irradiation effects on Dental Pulp Stem Cells' (DPSC) proliferation and migration. To understand the mechanisms underlying these effects, we investigated cytoskeleton organization and subsequent cell shape and stiffness. A 532-nm wavelength Nd:YAG laser (30 mW) was applied between 30 and 600 s on DPSC in vitro. Cell proliferation was analyzed at 24, 48, and 72 h after irradiation, by cell counting and enzymatic activity quantification (paranitrophenylphosphate phosphatase (pNPP) test). A wound healing assay was used to study cell migration after irradiation. Effects of PBM on cytoskeleton organization and cell shape were assessed by actin filaments staining. Elasticity changes after irradiation were quantified in terms of Young's modulus measured using Atomic Force Microscopy (AFM) force spectroscopy. Green light significantly improved DPSC proliferation with a maximal effect obtained after 300-s irradiation (energy fluence 5 J/cm2). This irradiation had a significant impact on cell migration, improving wound healing after 24 h. These results were concomitant with a decrease of cells' Young's modulus after irradiation. This cell softening was explained by actin cytoskeleton reorganization, with diminution of cell circularity and more abundant pseudopodia. This study highlights the interest of green laser PMB for the proliferation and migration of mesenchymal stem cells, with encouraging results for clinical application, especially for surgical wound healing procedures.
Collapse
Affiliation(s)
- Eve Malthiery
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Batoul Chouaib
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Ana María Hernandez-Lopez
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
- Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marta Martin
- L2C, CNRS, University Montpellier, Montpellier, France
| | | | - Jacques-Henri Torres
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Frédéric J Cuisinier
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | | |
Collapse
|
5
|
Chouaib B, Collart-Dutilleul PY, Blanc-Sylvestre N, Younes R, Gergely C, Raoul C, Scamps F, Cuisinier F, Romieu O. Identification of secreted factors in dental pulp cell-conditioned medium optimized for neuronal growth. Neurochem Int 2021; 144:104961. [PMID: 33465470 DOI: 10.1016/j.neuint.2021.104961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/05/2023]
Abstract
With their potent regenerative and protective capacities, stem cell-derived conditioned media emerged as an effective alternative to cell therapy, and have a prospect to be manufactured as pharmaceutical products for tissue regeneration applications. Our study investigates the neuroregenerative potential of human dental pulp cells (DPCs) conditioned medium (CM) and defines an optimization strategy of DPC-CM for enhanced neuronal outgrowth. Primary sensory neurons from mouse dorsal root ganglia were cultured with or without DPC-CM, and the lengths of βIII-tubulin positive neurites were measured. The impacts of several manufacturing features as the duration of cell conditioning, CM storage, and preconditioning of DPCs with some factors on CM functional activity were assessed on neurite length. We observed that DPC-CM significantly enhanced neurites outgrowth of sensory neurons in a concentration-dependent manner. The frozen storage of DPC-CM had no impact on experimental outcomes and 48 h of DPC conditioning is optimal for an effective activity of CM. To further understand the regenerative feature of DPC-CM, we studied DPC secretome by human growth factor antibody array analysis and revealed the presence of several factors involved in either neurogenesis, neuroprotection, angiogenesis, and osteogenesis. The conditioning of DPCs with the B-27 supplement enhanced significantly the neuroregenerative effect of their secretome by changing its composition in growth factors. Here, we show that DPC-CM significantly stimulate neurite outgrowth in primary sensory neurons. Moreover, we identified secreted protein candidates that can potentially promote this promising regenerative feature of DPC-CM.
Collapse
Affiliation(s)
| | | | | | - Richard Younes
- LBN, Univ Montpellier, Montpellier, France; The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | | | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | | | | |
Collapse
|
6
|
Briones X, Villalobos V, Queneau Y, Danna CS, Muñoz R, Ríos HE, Pavez J, Páez M, Cabrera R, Tamayo L, Urzúa MD. Surfaces based on amino acid functionalized polyelectrolyte films towards active surfaces for enzyme immobilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109938. [PMID: 31499948 DOI: 10.1016/j.msec.2019.109938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Surface based on polyelectrolytes functionalized with amino acids onto amino-terminated solid surfaces of silicon wafers was prepared, with the purpose of evaluate the chemical functionality of the polyelectrolyte films in adsorption and catalytic activity of an enzyme. In this work, the adsorption of the enzyme glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides (LmG6PD) was studied as model. The polyelectrolytes were obtained from poly (maleic anhydride-alt-vinylpyrrolidone) [poly(MA-alt-VP)] and functionalized with amino acids of different hydropathy index: glutamine (Gln), tyrosine (Tyr) and methionine (Met). The polyelectrolytes were adsorbed onto the amino-terminated silicon wafer at pH 3.5 and 4.5 and at low and high ionic strength. At low ionic strength and pH 3.5, the largest quantity of adsorbed polyelectrolyte was on the films containing glutamine moiety as the most hydrophilic amino acid in the side chain of polymer chain (5.88 mg/m2), whereas at high ionic strength and pH 4.5, the lowest quantity was in films containing tyrosine moiety in the side chain (1.88 mg/m2). The films were characterized by ellipsometry, contact angle measurements and atomic force microscopy (AFM). The polyelectrolyte films showed a moderate degree of hydrophobicity, the methionine derivative being the most hydrophobic film. With the aim of evaluate the effect of the amino acid moieties on the ability of the surface to adsorb enzymes, we study the activity of the enzyme on these surfaces. We observed that the polarity of the side chain of the amino acid in the polyelectrolyte affected the quantity of LmG6PD adsorbed, as well as its specific activity, showing that films prepared from poly(MA-alt-VP) functionalized with Met provide the best enzymatic performance. The results obtained demonstrated that the surfaces prepared from polyelectrolytes functionalized with amino acids could be an attractive and simple platform for the immobilization of enzymes, which could be of interest for biocatalysis applications.
Collapse
Affiliation(s)
- Ximena Briones
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Centro de Química Médica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Las Condes 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Valeria Villalobos
- Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, El Llano Subercaseaux 2801, San Miguel, Chile des 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon, ICBMS, UMR 5246 CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, 1 rue Victor grignard, Bâtiment Lederer, Université Claude Bernard, 69622 Villeurbanne cedex, France
| | - Caroline Silva Danna
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Rodrigo Muñoz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Hernán E Ríos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Jorge Pavez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Maritza Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Marcela D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
7
|
Ultra-slow diffusion of hexacyanoferrate anions in poly(diallyldimethyl ammonium chloride)-poly(acrylic acid sodium salt) multilayer films. J Colloid Interface Sci 2019; 539:306-314. [DOI: 10.1016/j.jcis.2018.12.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022]
|
8
|
Jang JY, Park SH, Park JH, Lee BK, Yun JH, Lee B, Kim JH, Min BH, Kim MS. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel. Macromol Biosci 2016; 16:1158-69. [DOI: 10.1002/mabi.201600001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Ja Yong Jang
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Bo Keun Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Jeong-Ho Yun
- Department of Periodontology; School of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju 561-712 Korea
| | - Bong Lee
- Department of Polymer Engineering; Pukyong National University; Busan 608-739 Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| |
Collapse
|
9
|
Collart-Dutilleul PY, Chaubron F, Vos JD, Cuisinier FJ. Allogenic banking of dental pulp stem cells for innovative therapeutics. World J Stem Cells 2015; 7:1010-1021. [PMID: 26328017 PMCID: PMC4550625 DOI: 10.4252/wjsc.v7.i7.1010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/10/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.
Collapse
|
10
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|