1
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
2
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
3
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
4
|
Bruns J, Egan T, Mercier P, Zustiak SP. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Acta Biomater 2022; 163:400-414. [PMID: 35659918 DOI: 10.1016/j.actbio.2022.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) is the deadliest brain tumor for which there is no cure. Bioengineered GBM models, such as hydrogel-encapsulated spheroids, that capture both cell-cell and cell-matrix interactions could facilitate testing of much needed therapies. Elucidation of specific microenvironment properties on spheroid responsiveness to therapeutics would enhance the usefulness of GBM models as predictive drug screening platforms. Here, GBM spheroids consisting of U87 or patient-derived GBM cells were encapsulated in soft (∼1 kPa), stiff (∼7 kPa), and dual-stiffness polyethylene glycol-based hydrogels, with GBM spheroids seeded at the stiffness interface. Spheroids were cultured for 7 days and examined for viability, size, invasion, laminin expression, hypoxia, proliferation, and response to the chemotherapeutic temozolomide (TMZ). We noted excellent cell viability in all hydrogels, and higher infiltration in soft compared to stiff hydrogels for U87 spheroids. In dual gels spheroids mostly infiltrated away from the stiffness interface with minimal crossing over it and some individual cell migration along the interface. U87 spheroids were equally responsive to TMZ in the soft and stiff hydrogels, but cell viability in the spheroid periphery was higher than the core for stiff hydrogels whereas the opposite was true for soft hydrogels. HIF1A expression was higher in the core of spheroids in the stiff hydrogels, while there was no difference in cell proliferation between spheroids in the stiff vs soft hydrogels. Patient-derived GBM spheroids did not show stiffness-dependent drug responses. U87 cells showed similar laminin expression in soft and stiff hydrogels with higher expression in the spheroid periphery compared to the core. Our results indicate that microenvironment stiffness needs to be considered in bioengineered GBM models including those designed for use in drug screening applications. STATEMENT OF SIGNIFICANCE: Recent work on tumor models engineered for use in drug screening has highlighted the potential of hydrogel-encapsulated spheroids as a simple, yet effective platform that show drug responses similar to native tumors. It has also been shown that substrate stiffness, in vivo and in vitro, affects cancer cell responses to drugs. This is particularly important for glioblastoma (GBM), the deadliest brain cancer, as GBM cells invade by following the stiffer brain structures such as white matter tracks and the perivascular niche. Invading cells have also been associated with higher resistance to chemotherapy. Here we developed GBM spheroid models using soft, stiff and dual-stiffness hydrogels to explore the connection between substrate stiffness, spheroid invasion and drug responsiveness in a controlled environment.
Collapse
Affiliation(s)
- Joseph Bruns
- Department of Biomedical Engineering, School of Engineering, Saint Louis University, St Louis, MO, USA
| | - Terrance Egan
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Philippe Mercier
- Department of Neurosurgery, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, School of Engineering, Saint Louis University, St Louis, MO, USA.
| |
Collapse
|
5
|
Luo C, Ding Z, Tu Y, Tan J, Luo Q, Song G. Biomaterial-based platforms for cancer stem cell enrichment and study. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0420. [PMID: 33738994 PMCID: PMC8185859 DOI: 10.20892/j.issn.2095-3941.2020.0420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are a relatively rare subpopulation of tumor cell with self-renewal and tumorigenesis capabilities. CSCs are associated with cancer recurrence, progression, and chemoradiotherapy resistance. Establishing a reliable platform for CSC enrichment and study is a prerequisite for understanding the characteristics of CSCs and discovering CSC-related therapeutic strategies. Certain strategies for CSC enrichment have been used in laboratory, particularly fluorescence-activated cell sorting (FACS) and mammosphere culture. However, these methods fail to recapitulate the in vivo chemical and physical conditions in tumors, thus potentially decreasing the malignancy of CSCs in culture and yielding unreliable research results. Accumulating research suggests the promise of a biomaterial-based three-dimensional (3D) strategy for CSC enrichment and study. This strategy has an advantage over conventional methods in simulating the tumor microenvironment, thus providing a more effective and predictive model for CSC laboratory research. In this review, we first briefly discuss the conventional methods for CSC enrichment and study. We then summarize the latest advances and challenges in biomaterial-based 3D CSC platforms. Design strategies for materials, morphology, and chemical and physical cues are highlighted to provide direction for the future construction of platforms for CSC enrichment and study.
Collapse
Affiliation(s)
- Chunhua Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhongjie Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yun Tu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jiao Tan
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Kroger SM, Hill L, Jain E, Stock A, Bracher PJ, He F, Zustiak SP. Design of Hydrolytically Degradable Polyethylene Glycol Crosslinkers for Facile Control of Hydrogel Degradation. Macromol Biosci 2020; 20:e2000085. [DOI: 10.1002/mabi.202000085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Stephanie M. Kroger
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Lindsay Hill
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Era Jain
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Aaron Stock
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| | - Paul J. Bracher
- Department of Chemistry Saint Louis University St. Louis MO 63103 USA
| | - Fahu He
- Department of Chemistry Saint Louis University St. Louis MO 63103 USA
| | - Silviya P. Zustiak
- Program of Biomedical Engineering Saint Louis University St. Louis MO 63103 USA
| |
Collapse
|
7
|
Del Favero G, Kraegeloh A. Integrating Biophysics in Toxicology. Cells 2020; 9:E1282. [PMID: 32455794 PMCID: PMC7290780 DOI: 10.3390/cells9051282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna Währinger Straße 38-40, 1090 Vienna, Austria
| | - Annette Kraegeloh
- INM—Leibniz-Institut für Neue Materialien GmbH, Campus D2 2, 66123 Saarbrücken, Germany;
| |
Collapse
|
8
|
Chim LK, Mikos AG. Biomechanical forces in tissue engineered tumor models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:42-50. [PMID: 30276358 PMCID: PMC6162057 DOI: 10.1016/j.cobme.2018.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors are complex three-dimensional (3D) networks of cancer and stromal cells within a dynamic extracellular matrix. Monolayer cultures fail to recapitulate the native microenvironment and therefore are poor candidates for pre-clinical drug studies and studying pathways in cancer. The tissue engineering toolkit allows us to make models that better recapitulate the 3D architecture present in tumors. Moreover, the role of the mechanical microenvironment, including matrix stiffness and shear stress from fluid flow, is known to contribute to cancer progression and drug resistance. We review recent developments in tissue engineered tumor models with a focus on the role of the biomechanical forces and propose future considerations to implement to improve physiological relevance of such models.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Syed S, Schober J, Blanco A, Zustiak SP. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates. PLoS One 2017; 12:e0187853. [PMID: 29136040 PMCID: PMC5685588 DOI: 10.1371/journal.pone.0187853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/29/2017] [Indexed: 11/19/2022] Open
Abstract
Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration.
Collapse
Affiliation(s)
- Sana Syed
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Joseph Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Alexandra Blanco
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Silviya Petrova Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
10
|
Ahmed N, Schober J, Hill L, Zustiak SP. Custom Multiwell Plate Design for Rapid Assembly of Photopatterned Hydrogels. Tissue Eng Part C Methods 2016; 22:543-51. [DOI: 10.1089/ten.tec.2015.0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Naveed Ahmed
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri
| | - Joseph Schober
- Department of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Lindsay Hill
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri
| | - Silviya P. Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
11
|
Zustiak SP, Dadhwal S, Medina C, Steczina S, Chehreghanianzabi Y, Ashraf A, Asuri P. Three-dimensional matrix stiffness and adhesive ligands affect cancer cell response to toxins. Biotechnol Bioeng 2015; 113:443-52. [DOI: 10.1002/bit.25709] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
| | - Smritee Dadhwal
- Department of Bioengineering; Santa Clara University; Santa Clara California
| | - Carlos Medina
- Department of Bioengineering; Santa Clara University; Santa Clara California
| | - Sonette Steczina
- Department of Bioengineering; Santa Clara University; Santa Clara California
| | | | - Anisa Ashraf
- Department of Biomedical Engineering; Saint Louis University; St. Louis Missouri
| | - Prashanth Asuri
- Department of Bioengineering; Santa Clara University; Santa Clara California
| |
Collapse
|