1
|
Tumor-targeted and self-assembled mixed micelles as carriers for enhanced anticancer efficacy of gemcitabine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Zhang FL, Huang N, Weng HL, Xue JP. Tamoxifen-zinc(II) phthalocyanine conjugates for target-based photodynamic therapy and hormone therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461950161x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although photodynamic therapy has been extensively studied in recent years and preclinical studies have shown promising results, strategies for enhancing PDT outcomes and reducing side effects still urgently need to be developed. In this study, a series of Tamoxifen-zinc(II) phthalocyanine conjugates have been designed and synthesized. In these “double-headed” conjugates, photodynamic therapy agent zinc(II) phthalocyanine and hormone therapy drug Tamoxifen were combined via oligoethylene glycol linkers. The conjugates show high specificity, and some of them show cytotoxic effects against the MCF-7 cells overexpressed Estrogen receptor, due to the targeting and cytostatic Tamoxifen moiety. Upon illumination, all these conjugates show high cytotoxicity due to the photosensitizing phthalocyanine unit. Their structure-activity relationship was also assessed. The results show that [Formula: see text]-substituted Tamoxifen-zinc(II) phthalocyanine conjugates are highly promising anticancer targeting agents which exhibit additive effects of photodynamic therapy and hormone therapy.
Collapse
Affiliation(s)
- Feng-Ling Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, P. R. China
| | - Ning Huang
- The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, 282 Wusi Road, Fuzhou 350003, Fujian, P. R. China
| | - Hui-Lan Weng
- The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, 282 Wusi Road, Fuzhou 350003, Fujian, P. R. China
| | - Jin-Ping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, and Fujian Engineering Research Center for Drug and Diagnoses and Treatment of Photodynamic Therapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| |
Collapse
|
3
|
Wang TY, Chen CY. Spatiotemporal Control Release of pH-Responsive Polymeric Micelles via Photochemically Induced Proton Generation. ACS APPLIED BIO MATERIALS 2019; 2:3659-3667. [DOI: 10.1021/acsabm.9b00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tung-Yun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| |
Collapse
|
4
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Chien YY, Wang TY, Liao PW, Wu WC, Chen CY. Folate-Conjugated and Dual Stimuli-Responsive Mixed Micelles Loading Indocyanine Green for Photothermal and Photodynamic Therapy. Macromol Biosci 2018; 18:e1700409. [PMID: 29733551 DOI: 10.1002/mabi.201700409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/05/2018] [Indexed: 11/05/2022]
Abstract
A folic acid targeted mixed micelle system based on co-assembly of poly(ε-caprolactone)-b-poly(methoxytri(ethylene glycol) methacrylate-co-N-(2-methacrylamido)ethyl folatic amide) and poly(ε-caprolactone)-b-poly(diethylene glycol monomethyl ether methacrylate) is developed to encapsulate indocyanine green (ICG) for photothermal therapy and photodynamic therapy. In this study, the use of folic acid is not only for specific cancer cell recognition, but also in virtue of the carboxylic acid on folic acid to regulate the pH-dependent thermal phase transition of polymeric micelles for controlled drug release. The prepared ICG-loaded mixed micelles possess several superior properties such as a preferable thermoresponsive behavior, excellent storage stability, and good local hyperthermia and reactive oxygen species generation under near-infrared (NIR) irradiation. The photototoxicity induced by the ICG-loaded micelles has efficiently suppressed the growth of HeLa cells (folate receptor positive cells) under NIR irradiation compared to that of HT-29, which has low folate receptor expression. Hence, this new type of mixed micelles with excellent features could be a promising delivery system for controlled drug release, effective cancer cell targeting, and photoactivated therapy.
Collapse
Affiliation(s)
- Yu-Ying Chien
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| | - Tung-Yun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| | - Po-Wen Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Chung Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 621, Taiwan
| |
Collapse
|
6
|
Tan Q, Bie M, Wang Z, Chu Y, Tao S, Xu X, Liu Y. Insights into the Mechanism of Bile Salt Aggregates Forming in a PEGylated Amphiphilic Polymer/Bile Salt Mixed Micelle. ChemistrySelect 2018. [DOI: 10.1002/slct.201800382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qinggang Tan
- School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education); Tongji University; Caoan Road 4800 Shanghai 201804, P. R. China
| | - Min Bie
- School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education); Tongji University; Caoan Road 4800 Shanghai 201804, P. R. China
| | - Zihao Wang
- School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education); Tongji University; Caoan Road 4800 Shanghai 201804, P. R. China
| | - Yanyan Chu
- School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education); Tongji University; Caoan Road 4800 Shanghai 201804, P. R. China
| | - Susu Tao
- School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education); Tongji University; Caoan Road 4800 Shanghai 201804, P. R. China
| | - Xiaoyan Xu
- School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education); Tongji University; Caoan Road 4800 Shanghai 201804, P. R. China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, Institute of Biliary Tract Diseases Research; Shanghai JiaoTong University School of Medicine; 1665 Kongjiang Road Shanghai 200092 China
| |
Collapse
|
7
|
Fan L, Zhao S, Jin X, Zhang Y, Song C, Wu H. Synergistic chemo-photodynamic therapy by "big & small combo nanoparticles" sequential release system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:109-121. [PMID: 28923402 DOI: 10.1016/j.nano.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 07/10/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Chemo-photodynamic combination has been manifested great potential for synergistic cancer therapy. Moreover, the synergistic efficacy could be significantly enhanced by well-designed sequential release manner of photosensitizers (PSs). Here we propose a "big & small combo nanoparticles (NPbig&small)" system for double loading PSs methylene blue (MB) and single absorbing chemotherapeutics drug Gemcitabine hydrochloride (GM·HCl). The "grown-in" MB from NPbig&small show two-peak sequential release profile, significantly improve the absorbed chemotherapeutic efficacy of GM·HCl. The corresponding two-peak sequential release profile can be illustrated by related mathematics function. The sequential release property was clearly observed through morphological evolution of NPs both in water and cells by TEM. Furthermore, NPbig&small demonstrate well EPR effect and improved synergistic efficacy from in vitro and in vivo results. Thus, NPbig&small chemo-photodynamic system and the programmable sequential release mechanism provide a promising platform that ensures an enhanced synergistic chemo-photodynamic effect in cancer treatment.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmaceutical analysis, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Saisai Zhao
- Institute of Biomedical and Health Engineering, ShenZhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongsheng Zhang
- Department of Administrative, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chaojun Song
- Department of immunology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Hong Wu
- Department of Pharmaceutical analysis, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Zhang FL, Song MR, Yuan GK, Ye HN, Tian Y, Huang MD, Xue JP, Zhang ZH, Liu JY. A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy. J Med Chem 2017; 60:6693-6703. [PMID: 28699738 DOI: 10.1021/acs.jmedchem.7b00682] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of photodynamic therapy and other cancer treatment modalities is a promising strategy to enhance therapeutic efficacy and reduce side effects. In this study, a tamoxifen-zinc(II) phthalocyanine conjugate linked by a triethylene glycol chain has been synthesized and characterized. Having tamoxifen as the targeting moiety, the conjugate shows high specific affinity to MCF-7 breast cancer cells overexpressed estrogen receptors (ERs) and tumor tissues, therefore leading to a cytotoxic effect in the dark due to the cytostatic tamoxifen moiety, and a high photocytotoxicity due to the photosensitizing phthalocyanine unit against the MCF-7 cancer cells. The high photodynamic activity of the conjugate can be attributed to its high cellular uptake and efficiency in generating intracellular reactive oxygen species. Upon addition of exogenous 17β-estradiol as an ER inhibitor, the cellular uptake and photocytotoxicity of the conjugate are reduced significantly. As shown by confocal microscopy, the conjugate is preferentially localized in the lysosomes of the MCF-7 cells.
Collapse
Affiliation(s)
- Feng-Ling Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University , 548 Binwen Road, Hangzhou, 310053, P. R. China
| | - Mei-Ru Song
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Gan-Kun Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Huan-Nian Ye
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Ye Tian
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Ming-Dong Huang
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Jin-Ping Xue
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Zhi-Hong Zhang
- Fuzhou General Hospital of Nanjing Military Command , 156 West Second Ring Road, Fuzhou 350005, Fujian, P. R. China
| | - Jian-Yong Liu
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| |
Collapse
|
9
|
Yeow J, Shanmugam S, Corrigan N, Kuchel RP, Xu J, Boyer C. A Polymerization-Induced Self-Assembly Approach to Nanoparticles Loaded with Singlet Oxygen Generators. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01581] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P. Kuchel
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|