1
|
Zhou H, Yang Z, Jin G, Wang L, Su Y, Liu H, Sun H, Xue L, Mi L, Veselova IA, Li M, Lv S, Chen X. Prodrug-designed nanocarrier co-delivering chemotherapeutic and vascular disrupting agents with exceptionally high drug loading capacity. J Control Release 2025; 382:113628. [PMID: 40088979 DOI: 10.1016/j.jconrel.2025.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Chemotherapy remains a vital component of cancer treatment, with combination therapy widely used in clinical practice to overcome the limitations of single-drug administration. However, challenges persist including pharmacokinetic discrepancies among different pharmaceutical agents, and insufficient synergistic efficiency in small-molecule drug combinations. There is an urgent need to develop more efficient combination therapy strategies. Nanocarriers have been extensively used to address issues associated with free drugs, but achieving high delivery efficiency of small-molecular pharmaceuticals through traditional drug delivery methods remains difficult. Herein, we report an exceptionally efficient drug delivery strategy mediated by prodrug design. A prodrug composed of paclitaxel (PTX) and combretastatin A-4 (CA4) was developed to achieve synchronous and efficient delivery of both drugs. When the prodrug was encapsulated by a nanocarrier, the drug loading capacity (DLC) could reach as high as 99 %, almost achieving quantitative drug loading. The good biocompatibility and potent anti-tumor efficacy of the prodrug-loaded nanoparticles were confirmed through both in vitro and in vivo experiments. Our work provides valuable insights into the safe and efficient combination cancer therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Guanyu Jin
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Lanqing Wang
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Yuanzhen Su
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Hao Liu
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Liwei Mi
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Irina A Veselova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
Hashemi H, Tayyebi R, Malek S, Jaafari MR, Malaekeh-Nikouei B, Mohammadi M. Advanced localized gene transfection and drug delivery using an injectable in situ forming dextran-based hydrogel against breast cancer. Int J Pharm 2025:125759. [PMID: 40414324 DOI: 10.1016/j.ijpharm.2025.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/22/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Although breast cancer mortality rates have declined, effective localized delivery systems to reduce post-surgical recurrence remains challenging. We developed an injectable in situ forming hybrid hydrogel incorporating liposomal combretastatin A4 (CA4) and plasmid green fluorescent protein (pGFP) lipoplexes for prolonged simultaneous drug and gene delivery to the tumor microenvironment. Cationic liposomes were synthesized using cholesterol/DOTAP2 (1:1 M ratio) and complexed with pGFP as the reporter gene. CA4 loaded liposomes made of HSPC3/DSPE4/DPPG5/Cholesterol/CA4 (molar ratios: 5/20/5/15/55) were synthesized with 84 % encapsulation efficiency. The hydrogel was injectable at room temperature, gelling after 30 min at 37 °C, with 18.38 % swelling index and 14.21 % degradation rate over 30 days. Drug release studies showed 32.22 % CA4 release over 21 days. In vivo studies in BALB/c mice demonstrated significant tumor growth reduction in the treatment group. Histopathological studies revealed that the administration of the hybrid hydrogel induced the highest tumor necrosis with no severe damage to other organs. Notably, animal imaging studies indicated prolonged and enhanced gene expression, surpassing that of the PEI 25 kDa standard. These findings underscore the hybrid hydrogel as a potent delivery platform, facilitating localized simultaneous drug and gene delivery, enhancing anti-angiogenic effects, sustained gene expression and ensuring formulation stability for extended therapeutic benefits.
Collapse
Affiliation(s)
- Homasadat Hashemi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roshanak Tayyebi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Malek
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tang B, Zhang Y, Liu X, Wang Y, He P. A Novel Polyamino Acid Sulfur Dioxide Prodrug Synergistically Elevates ROS with β-Lapachone in Cancer Treatment. J Pharm Sci 2024; 113:1239-1247. [PMID: 38042342 DOI: 10.1016/j.xphs.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Due to the distorted redox balance, cancer cells are considered more vulnerable to excessive reactive oxygen species (ROS). In a variety of oxidative stress-related therapies, gas therapy has emerged as a new therapeutic strategy owing to its efficacy and biosafety. Herein, a newly-discovered gasotransmitter sulfur dioxide (SO2) and a tumor specific ROS generation agent β-lapachone (Lapa) were firstly combined for anticancer therapy. Firstly, amphiphilic glutathione (GSH) responsive polypeptide SO2 prodrug PEG-b-poly(Lys-DNs) was synthesized by ring opening polymerization of SO2-containing N-carboxyanhydride. Then, Lapa was encapsulated into the polymeric micelles with loading content of 8.6 % and loading efficiency of 51.6 %. The obtained drug-loaded nanoparticles (NPs(Lapa)) exhibited a fast release of Lapa and SO2 in the stimuli of 10 mM GSH in PBS. Subsequently, in vitro experiment showed that NPs(Lapa) exhibited obvious cytotoxicity towards 4 T1 cancer cells at a concentration of 2.0 μg/mL, which may be attributed to the depletion of intracellular GSH and upregulation of ROS level both by SO2 release and by the ROS generation from lapachone transformation. In vivo fluorescence imaging showed that the NPs were gradually enriched in tumor tissues in 24 h, probably due to the enhanced permeability and retention effect of NPs. Finally, NPs(Lapa) showed the best anticancer effect in 4 T1 tumor bearing mice with a tumor inhibiting rate (IRT) of 61 %, whereas IRT for free Lapa group was only 23.6 %. This work may be a new attempt to combine SO2 gas therapy with ROS inducer for anticancer therapy through oxidative stress.
Collapse
Affiliation(s)
- Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yanping Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Chongqing Research Institute, Changchun University of Science and Technology, No.618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City, 401135, PR China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| |
Collapse
|
4
|
Li Y, Gao Y, Pan Z, Jia F, Xu C, Cui X, Wang X, Wu Y. Fabrication of Poly Dopamine@poly (Lactic Acid-Co-Glycolic Acid) Nanohybrids for Cancer Therapy via a Triple Collaboration Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1447. [PMID: 37176991 PMCID: PMC10180254 DOI: 10.3390/nano13091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Breast cancer is a common malignant tumor among women and has a higher risk of early recurrence, distant metastasis, and poor prognosis. Systemic chemotherapy is still the most widely used treatment for patients with breast cancer. However, unavoidable side effects and acquired resistance severely limit the efficacy of treatment. The multi-drug combination strategy has been identified as an effective tumor therapy pattern. In this investigation, we demonstrated a triple collaboration strategy of incorporating the chemotherapeutic drug doxorubicin (DOX) and anti-angiogenesis agent combretastatin A4 (CA4) into poly(lactic-co-glycolic acid) (PLGA)-based co-delivery nanohybrids (PLGA/DC NPs) via an improved double emulsion technology, and then a polydopamine (PDA) was modified on the PLGA/DC NPs' surface through the self-assembly method for photothermal therapy. In the drug-loaded PDA co-delivery nanohybrids (PDA@PLGA/DC NPs), DOX and CA4 synergistically induced tumor cell apoptosis by interfering with DNA replication and inhibiting tumor angiogenesis, respectively. The controlled release of DOX and CA4-loaded PDA@PLGA NPs in the tumor region was pH dependent and triggered by the hyperthermia generated via laser irradiation. Both in vitro and in vivo studies demonstrated that PDA@PLGA/DC NPs enhanced cytotoxicity under laser irradiation, and combined therapeutic effects were obtained when DOX, CA4, and PDA were integrated into a single nanoplatform. Taken together, the present study demonstrates a nanoplatform for combined DOX, CA4, and photothermal therapy, providing a potentially promising strategy for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Yunhao Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China;
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yujuan Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenlu Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Xu Y, Lv J, Kong C, Li Y, Wang K, Shen N, Tang Z. A novel hypoxia‐activated polymeric
Tirapazamine
derivative for enhanced antitumor therapy. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajun Xu
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Jianlin Lv
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Chaoying Kong
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Yanran Li
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Kun Wang
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Na Shen
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Zhaohui Tang
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| |
Collapse
|
6
|
Wang L, Xu H, Weng L, Sun J, Jin Y, Xiao C. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol 2022; 13:1041073. [PMID: 36618938 PMCID: PMC9814015 DOI: 10.3389/fphar.2022.1041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Henan Xu
- The First Hospital of Jilin University, Changchun, China
| | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| |
Collapse
|
7
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
8
|
Guo K, Ma X, Li J, Zhang C, Wu L. Recent advances in combretastatin A-4 codrugs for cancer therapy. Eur J Med Chem 2022; 241:114660. [PMID: 35964428 DOI: 10.1016/j.ejmech.2022.114660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
CA4 is a potent microtubule polymerization inhibitor and vascular disrupting agent. However, the in vivo efficiency of CA4 is limited owing to its poor pharmacokinetics resulting from its high lipophilicity and low water solubility. To improve the water solubility, CA4 phosphate (CA4P) has been developed and shows potent antivascular and antitumor effects. CA4P had been evaluated as a vascular disrupting agent in previousc linical trials. However, it had been discontinued due to the lack of a meaningful improvement in progression-free survival and unfavorable partial response data. Codrug is a drug design approach to chemically bind two or more drugs to improve therapeutic efficiency or decrease adverse effects. This review describes the progress made over the last twenty years in developing CA4-based codrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues. It also discusses the existing problems and the developmental prospects of CA4 codrugs.
Collapse
Affiliation(s)
- Kerong Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xin Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jian Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
10
|
Dong S, Tang Y, He P, Ma S, Song W, Deng M, Tang Z. Hydrophobic modified poly(
l
‐glutamic acid) graft copolymer micelles with ultrahigh drug loading capacity for anticancer drug delivery. POLYM INT 2021. [DOI: 10.1002/pi.6342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Si Dong
- Department of Chemistry Northeast Normal University Changchun PR China
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun PR China
| | - Yue Tang
- Department of Chemistry Northeast Normal University Changchun PR China
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun PR China
| | - Pan He
- School of Materials Science and Engineering Changchun University of Science and Technology Changchun PR China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun PR China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun PR China
| | - Mingxiao Deng
- Department of Chemistry Northeast Normal University Changchun PR China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun PR China
| |
Collapse
|
11
|
Improved Antibacterial Activity of Water-Soluble Nanoformulated Kaempferol and Combretastatin Polyphenolic Compounds. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5682182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kaempferol and combretastatin are polyphenolic compounds derived from plant sources which are known for their antibacterial activity. However, owing to their large size and water insolubility, their antibacterial activity is limited. In this context, the present study focused on the nanoformulation of kaempferol (NF-k) and combretastatin (NF-c) and their influence on water solubility and antibacterial properties. The NF-k and NF-c were prepared using the solvent evaporation method and were thoroughly characterized for evaluating the morphology, molecular vibrations, size, etc. Based on the results, it is observed that the pristine forms of kaempferol and combretastatin drugs get nanoformulated and completely soluble in water. Using particle size analyzer, the particle sizes of NF-k and NF-c were estimated as 334 nm and 260 nm, respectively, which are very fine compared to pristine kaempferol and combretastatin (5193 nm and 1217 nm, respectively). The molecular vibrations that exist in NF-k and NF-c were confirmed by the Fourier transform infrared spectra, where the nanoformulated drug showed lower intensities than the pristine form of kaempferol and combretastatin. The drug release kinetics of the nanoformulated drugs were carried out using the dialysis membrane method and were compared with their pristine forms. Owing to the size effect, the NF-k and NF-c release up to 50% of the drug in a sustained manner till 50 h showing twofold higher concentration than the control where it released 25%. The antibacterial activity was assessed by measuring the optical density at 600 nm using UV-vis spectrophotometer and displayed significant activity against gram-positive Staphylococcus aureus strain. The mechanisms behind the antibacterial activity of NF-k and NF-c were discussed in detail. The activation of ATP-dependent efflux pump system and the blockage of porin channels could be the cause for the bactericidal activity. Our understanding of efflux pumps and their role in antibacterial activity is still in its early stages. No studies have been performed to date using nanoformulations of kaempferol and combretastatin to investigate their roles. This complicates the determination of the exact mechanisms acting against bacterial growth when using nanoformulation drugs. Our increasing knowledge of water-soluble nanoformulation drugs and their roles in reduced bacterial activity will pave the way to developing effective treatments in the future.
Collapse
|