1
|
Di Girolamo N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401763. [PMID: 38777343 DOI: 10.1002/adma.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The mammalian cornea is decorated with stem cells bestowed with the life-long task of renewing the epithelium, provided they remain healthy, functional, and in sufficient numbers. If not, a debilitating disease known as limbal stem cell deficiency (LSCD) can develop causing blindness. Decades after the first stem cell (SC) therapy is devised to treat this condition, patients continue to suffer unacceptable failures. During this time, improvements to therapeutics have included identifying better markers to isolate robust SC populations and nurturing them on crudely modified biological or biomaterial scaffolds including human amniotic membrane, fibrin, and contact lenses, prior to their delivery. Researchers are now gathering information about the biomolecular and biomechanical properties of the corneal SC niche to decipher what biological and/or synthetic materials can be incorporated into these carriers. Advances in biomedical engineering including electrospinning and 3D bioprinting with surface functionalization and micropatterning, and self-assembly models, have generated a wealth of biocompatible, biodegradable, integrating scaffolds to choose from, some of which are being tested for their SC delivery capacity in the hope of improving clinical outcomes for patients with LSCD.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Yamada A, Kitano S, Matsusaki M. Cellular memory function from 3D to 2D: Three-dimensional high density collagen microfiber cultures induce their resistance to reactive oxygen species. Mater Today Bio 2024; 26:101097. [PMID: 38827038 PMCID: PMC11140783 DOI: 10.1016/j.mtbio.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Cell properties generally change when the culture condition is changed. However, mesenchymal stem cells cultured on a hard material surface maintain their differentiation characteristics even after being cultured on a soft material surface. This phenomenon suggests the possibility of a cell culture material to memorize stem cell function even in changing cell culture conditions. However, there are no reports about cell memory function in three-dimensional (3D) culture. In this study, colon cancer cells were cultured with collagen microfibers (CMF) in 3D to evaluate their resistance to reactive oxygen species (ROS) in comparison with a monolayer (2D) culture condition and to understand the effect of 3D-culture on cell memory function. The ratio of ROS-negative cancer cells in 3D culture increased with increasing amounts of CMF and the highest amount of CMF was revealed to be 35-fold higher than that of the 2D condition. The ROS-negative cells ratio was maintained for 7 days after re-seeding in a 2D culture condition, suggesting a 3D-memory function of ROS resistance. The findings of this study will open up new opportunities for 3D culture to induce cell memory function.
Collapse
Affiliation(s)
- Asuka Yamada
- TOPPAN HOLDINGS INC. Business Development Division, Technical Research Institute, Takanodaiminami, Sugito-machi, Saitama 345-8508, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shiro Kitano
- TOPPAN HOLDINGS INC. Business Development Division, Technical Research Institute, Takanodaiminami, Sugito-machi, Saitama 345-8508, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Deng X, Yu C, Zhang X, Tang X, Guo Q, Fu M, Wang Y, Fang K, Wu T. A chitosan-coated PCL/nano-hydroxyapatite aerogel integrated with a nanofiber membrane for providing antibacterial activity and guiding bone regeneration. NANOSCALE 2024; 16:9861-9874. [PMID: 38712977 DOI: 10.1039/d4nr00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer. Chitosan (CS) solution served as a middle layer to provide mechanical support and antibacterial effects between the two layers. Morphological results showed that the loose layer had a porous structure with n-HA successfully dispersed in the aerogels, while the dense layer possessed a sufficiently dense structure. In vitro antibacterial experiments illustrated that the CS solution in the middle layer stabilized the scaffold structure and endowed the scaffold with good antibacterial properties. The cytocompatibility results indicated that both fibroblasts and osteoblasts exhibited superior cell activity on the dense and loose layers, respectively. In particular, the dense layer made of nanofibers could work as a barrier layer to inhibit the infiltration of fibroblasts into the loose layer. In vitro osteogenesis analysis suggested that the PCL/n-HA aerogel could enhance the bone induction ability of bone mesenchymal stem cells, which was confirmed by the increased expression of the alkaline phosphatase activity. The loose structure facilitated the infiltration and migration of bone mesenchymal stem cells for better osteogenesis. In summary, such a composite scaffold exhibited excellent osteogenic and antibacterial properties as well as the barrier effect, thus holding promising potential for use as GBR materials.
Collapse
Affiliation(s)
- Xinyuan Deng
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
| | - Chenghao Yu
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaopei Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xunmeng Tang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
| | - Qingxia Guo
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Manfei Fu
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao, State Key Laboratory for Biofibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Tong Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Tang Z, Li J, Fu L, Xia T, Dong X, Deng H, Zhang C, Xia H. Janus silk fibroin/polycaprolactone-based scaffold with directionally aligned fibers and porous structure for bone regeneration. Int J Biol Macromol 2024; 262:129927. [PMID: 38311130 DOI: 10.1016/j.ijbiomac.2024.129927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
To promote bone repair, it is desirable to develop three-dimensional multifunctional fiber scaffolds. The densely stacked and tightly arranged conventional two-dimensional electrospun fibers hinder cell penetration into the scaffold. Most of the existing three-dimensional structural materials are isotropic and monofunctional. In this research, a Janus nanofibrous scaffold based on silk fibroin/polycaprolactone (SF/PCL) was fabricated. SF-encapsulated SeNPs demonstrated stability and resistance to aggregation. The outside layer (SF/PCL/Se) of the Janus nanofiber scaffold displayed a structured arrangement of fibers, facilitating cell growth guidance and impeding cell invasion. The inside layer (SF/PCL/HA) featured a porous structure fostering cell adhesion. The Janus fiber scaffold containing SeNPs notably suppressed S. aureus and E. coli activities, correlating with SeNPs concentration. In vitro, findings indicated considerable enhancement in alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts and upregulation of genes linked to osteogenic differentiation with exposure to the SF/PCL/HA/Se Janus nanofibrous scaffold. Moreover, in vivo, experiments demonstrated successful critical bone defect repair in mouse skulls using the SF/PCL/HA/Se Janus nanofiber scaffold. These findings highlight the potential of the SF/PCL-based Janus nanofibrous scaffold, integrating SeNPs and nHA, as a promising biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Ziqiao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Chao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
6
|
Xue K, Zhang S, Ge J, Wang Q, Qi L, Liu K. Integration of Bioglass Into PHBV-Constructed Tissue-Engineered Cartilages to Improve Chondrogenic Properties of Cartilage Progenitor Cells. Front Bioeng Biotechnol 2022; 10:868719. [PMID: 35685093 PMCID: PMC9172278 DOI: 10.3389/fbioe.2022.868719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffold has proven to be a promising three-dimensional (3D) biodegradable and bioactive scaffold for the growth and proliferation of cartilage progenitor cells (CPCs). The addition of Bioglass into PHBV was reported to increase the bioactivity and mechanical properties of the bioactive materials.Methods: In the current study, the influence of the addition of Bioglass into PHBV 3D porous scaffolds on the characteristics of CPC-based tissue-engineered cartilages in vivo were compared. CPCs were seeded into 3D macroporous PHBV scaffolds and PHBV/10% Bioglass scaffolds. The CPC–scaffold constructs underwent 6 weeks in vitro chondrogenic induction culture and were then transplanted in vivo for another 6 weeks to evaluate the difference between the CPC–PHBV construct and CPC–PHBV/10% Bioglass construct in vivo.Results: Compared with the pure PHBV scaffold, the PHBV/10% Bioglass scaffold has better hydrophilicity and a higher percentage of adhered cells. The CPC–PHBV/10%Bioglass construct produced much more cartilage-like tissues with higher cartilage-relative gene expression and cartilage matrix protein production and better biomechanical performance than the CPC–PHBV construct.Conclusion: The addition of Bioglass into 3D PHBV macroporous scaffolds improves the characteristics of CPC-based tissue-engineered cartilages in vivo.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, Hainan Western Central Hospital, Hainan, China
| | - Shuqi Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Ge
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Lin Qi, ; Kai Liu,
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lin Qi, ; Kai Liu,
| |
Collapse
|