1
|
Lee M, Bui HTD, Pham L, Kim S, Yoo HS. Reactive Oxygen Species (ROS)-Assisted Nano-Therapeutics Surface-Decorated with Epidermal Growth Factor Fragments for Enhanced Wound Healing. Macromol Biosci 2024; 24:e2300225. [PMID: 37770246 DOI: 10.1002/mabi.202300225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/24/2023] [Indexed: 09/30/2023]
Abstract
In this study, stimuli-responsive liberation of an epidermal growth factor fragment (EGFfr) is accomplished using nanofibrous meshes to improve wound healing effects. Electrospun nanofibers are fragmented by mechanical milling, followed by aminolysis to fabricate powdered nanofibrils (NFs). EGFfrs are covalently immobilized on NFs via thioketal linkers (EGFfr@TK@NF) for reactive oxygen species (ROS)-dependent liberation. EGFfr@TK@NF exhibits ROS-responsive liberation of EGFfr from the matrix at hydrogen peroxide (H2 O2 ) concentrations of 0-250 mm. Released EGFfr is confirmed to enhance the migration of HaCaT cell monolayers, and keratinocytic gene expression levels are significantly enhanced when H2 O2 is added to obtain the released fraction of NFs. An in vivo study on the dorsal wounds of mice reveals that EGFfr-immobilized NFs improve the expression levels of keratin1, 5, and 14 for 2 weeks when H2 O2 is added to the wound sites, suggesting that the wounded skin is re-epithelized with the original epidermis. Thus, EGFfrs-immobilized NFs are anticipated to be potential nanotherapeutics for wound treatment in combination with the conventional disinfection process with H2 O2 .
Collapse
Affiliation(s)
- Miso Lee
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Lan Pham
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Songrae Kim
- Chuncheon Center Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
2
|
Chen K, Li Y, Li Y, Tan Y, Liu Y, Pan W, Tan G. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J Nanobiotechnology 2023; 21:237. [PMID: 37488582 PMCID: PMC10364421 DOI: 10.1186/s12951-023-01987-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering. Therefore, this paper reviews the recent trends of stimuli-responsive electrospun nanofibers as intelligent drug delivery platforms in the field of biomedicine.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yingshuo Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|