1
|
Dong DL, Jin GZ. YAP and ECM Stiffness: Key Drivers of Adipocyte Differentiation and Lipid Accumulation. Cells 2024; 13:1905. [PMID: 39594653 PMCID: PMC11593301 DOI: 10.3390/cells13221905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
ECM stiffness significantly influences the differentiation of adipose-derived stem cells (ADSCs), with YAP-a key transcription factor in the Hippo signaling pathway-playing a pivotal role. This study investigates the effects of ECM stiffness on ADSC differentiation and its relationship with YAP signaling. Various hydrogel concentrations were employed to simulate different levels of ECM stiffness, and their impact on ADSC differentiation was assessed through material properties, adipocyte-specific gene expression, lipid droplet staining, YAP localization, and protein levels. Our results demonstrated that increasing hydrogel stiffness enhanced adipocyte differentiation in a gradient manner. Notably, inhibiting YAP signaling further increased lipid droplet accumulation, suggesting that ECM stiffness influences adipogenesis by modulating YAP signaling and its cytoplasmic phosphorylation. This study elucidates the molecular mechanisms underlying ECM stiffness-dependent lipid deposition, highlighting YAP's regulatory role in adipogenesis. These findings provide valuable insights into the regulation of cell differentiation and have important implications for tissue engineering and obesity treatment strategies.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
He X, Yamada M, Watanabe J, Pengyu Q, Chen J, Egusa H. Titanium nanotopography enhances mechano-response of osteocyte three-dimensional network toward osteoblast activation. BIOMATERIALS ADVANCES 2024; 163:213939. [PMID: 38954876 DOI: 10.1016/j.bioadv.2024.213939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks. We investigated the effects of titanium nanosurfaces on intercellular network development and regulatory capabilities of bone turnover in osteocytes under cyclic compressive loading. MLO-Y4 mouse osteocyte-like cell lines embedded in type I collagen 3D gels on titanium nanosurfaces promoted the formation of intercellular networks and gap junctions even under static culture conditions, in contrast to the poor intercellular connectivity in machined titanium surfaces. The osteocyte 3D network on the titanium nanosurfaces further enhanced gap junction formation after additional culturing under cyclic compressive loading simulating masticatory loading, beyond the degree observed on machined titanium surfaces. A prostaglandin synthesis inhibitor cancelled the dual effects of titanium nanosurfaces and cyclic compressive loading on the upregulation of gap junction-related genes in the osteocyte 3D culture. Supernatants from osteocyte monolayer culture on titanium nanosurfaces promoted osteocyte maturation and intercellular connections with gap junctions. With cyclic loading, titanium nanosurfaces induced expression of the regulatory factors of bone turnover in osteocyte 3D cultures, toward higher osteoblast activation than that observed on machined surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes promoted intercellular 3D network development and regulatory function toward osteoblast activation in osteocytes activated by cyclic compressive loading, through intercellular crosstalk by prostaglandin.
Collapse
Affiliation(s)
- Xindie He
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| | - Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Qu Pengyu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
3
|
Yang L, Bu X, Lu X, Wan J, Zhang X, Zhang W, Zhong L. SERS-based long-term mitochondrial pH monitoring during differentiation of human induced pluripotent stem cells to neural progenitor cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:2926-2936. [PMID: 38855674 PMCID: PMC11161384 DOI: 10.1364/boe.519931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
As one of the important organelles in the process of cell differentiation, mitochondria regulate the whole process of differentiation by participating in energy supply and information transmission. Mitochondrial pH value is a key indicator of mitochondrial function. Therefore, real-time monitoring of mitochondrial pH value during cell differentiation is of great significance for understanding cell biochemical processes and exploring differentiation mechanisms. In this study, Surface-enhanced Raman scattering (SERS) technology was used to achieve the real-time monitoring of mitochondrial pH during induced pluripotent stem cells (iPSCs) differentiation into neural progenitor cells (NPCs). The results showed that the variation trend of mitochondrial pH in normal and abnormal differentiated batches was different. The mitochondrial pH value of normal differentiated cells continued to decline from iPSCs to embryoid bodies (EB) day 4, and continued to rise from EB day 4 to the NPCs stage, and the mitochondrial microenvironment of iPSCs to NPCs differentiation became acidic. In contrast, the mitochondrial pH value of abnormally differentiated cells declined continuously during differentiation. This study improves the information on acid-base balance during cell differentiation and may provide a basis for further understanding of the changes and regulatory mechanisms of mitochondrial metabolism during cell differentiation. This also helps to improve more accurate and useful differentiation protocols based on the microenvironment within the mitochondria, improving the efficiency of cell differentiation.
Collapse
Affiliation(s)
- Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoya Bu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Morimoto N, Murata A, Yamamoto Y, Narita F, Yamamoto M. Adhesive Sulfabetaine Polymer Hydrogels for the Sandwich Cell Culture. ACS OMEGA 2024; 9:11942-11949. [PMID: 38496950 PMCID: PMC10938316 DOI: 10.1021/acsomega.3c09708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Sandwich culture systems are techniques that cultivate cells by sandwiching them between the top and bottom substrates. Since the substrates can be separated, the system is expected to be applied to the construct layering of patterned cells and to the isolation of stacked cells. In this study, we prepared hydrogels composed of zwitterionic sulfabetaine polymers, poly[2-(2-(methacryloyloxyethyl)dimethylammonio)ethyl-1-sulfate] (PZBMA). The ZBMA homopolymers have been shown to form aggregates in aqueous solutions due to their intermolecular interactions. The water content of the PZBMA hydrogels in water was ∼70% regardless of N,N'-methylenebis(acrylamide), BIS, content as the cross-linker. The results indicated that the intermolecular interaction contributed more to the swelling behaviors than the chemical cross-linker. However, PZBMA hydrogels with 0.1 mol % BIS showed not only high elongation (∼850%) properties but also high adhesiveness and self-healing properties. When this PZBMA hydrogel was impregnated with collagen and subjected to sandwich culture using Madin-Darby canine kidney (MDCK) cells, a three-dimensional morphology of MDCK cell aggregates was constructed. Such a sulfabetaine hydrogel is expected to be developed for regenerative medicine.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department
of Materials for Energy, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Atsuki Murata
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuta Yamamoto
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Fumio Narita
- Department
of Frontier Sciences for Advanced Environment, Graduate School of
Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Masaya Yamamoto
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Graduate
School of Biomedical Engineering,Tohoku
University, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Tiskratok W, Yamada M, Watanabe J, Pengyu Q, Kimura T, Egusa H. Mechanoregulation of Osteoclastogenesis-Inducing Potentials of Fibrosarcoma Cell Line by Substrate Stiffness. Int J Mol Sci 2023; 24:ijms24108959. [PMID: 37240303 DOI: 10.3390/ijms24108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
A micro-physiological system is generally fabricated using soft materials, such as polydimethylsiloxane silicone (PDMS), and seeks an inflammatory osteolysis model for osteoimmunological research as one of the development needs. Microenvironmental stiffness regulates various cellular functions via mechanotransduction. Controlling culture substrate stiffness may help spatially coordinate the supply of osteoclastogenesis-inducing factors from immortalized cell lines, such as mouse fibrosarcoma L929 cells, within the system. Herein, we aimed to determine the effects of substrate stiffness on the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction. L929 cells showed increased expression of osteoclastogenesis-inducing factors when cultured on type I collagen-coated PDMS substrates with soft stiffness, approximating that of soft tissue sarcomas, regardless of the addition of lipopolysaccharide to augment proinflammatory reactions. Supernatants of L929 cells cultured on soft PDMS substrates promoted osteoclast differentiation of the mouse osteoclast precursor RAW 264.7 by stimulating the expression of osteoclastogenesis-related gene markers and tartrate-resistant acid phosphatase activity. The soft PDMS substrate inhibited the nuclear translocation of YES-associated proteins in L929 cells without reducing cell attachment. However, the hard PDMS substrate hardly affected the cellular response of the L929 cells. Our results showed that PDMS substrate stiffness tuned the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, 111 University Rd. Suranaree, Nakhon Ratchasima 30000, Mueang, Thailand
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Qu Pengyu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Chiyoda-ku, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|