1
|
Qiu F, Gong J, Tong G, Han S, Zhuang X, Zhu X. Near-infrared Light-Induced Polymerizations: Mechanisms and Applications. Chempluschem 2024; 89:e202300782. [PMID: 38345544 DOI: 10.1002/cplu.202300782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Photopolymerizations have garnered significant attention in polymer science due to their low polymerization temperature, high production efficiency, environmental friendliness, and spatial controllability. Despite these merits, the poor penetration and severe chemical damage from ultraviolet/visible (UV/Vis) light resources pose significant barriers to their success in conventional photopolymerizations. A recent breakthrough involving the utilization of near-infrared (NIR) laser with long wavelength has been exploited for diverse applications. With the combination of a NIR photosensitizer (PS), NIR-induced photopolymerizations have been successfully developed to alleviate the challenges in conventional methods. The enhancement of penetration depth and safety of NIR-induced photopolymerizations can contribute significantly to improving the efficiency of polymerization for production of intricate structures across various scales. In this concept, the typical types of PSs and polymerization mechanisms (PMs) within the NIR-induced photopolymerization systems have been classified in detail. Additionally, the applications of various polymers achieved by NIR-induced photopolymerizations are summarized. Furthermore, research directions and future challenges of this field are also discussed comprehensively.
Collapse
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Jiao Gong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Gangsheng Tong
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaodong Zhuang
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Elkhanoufi S, Stefania R, Alberti D, Baroni S, Aime S, Geninatti Crich S. Highly Sensitive "Off/On" EPR Probes to Monitor Enzymatic Activity. Chemistry 2022; 28:e202104563. [PMID: 35175676 PMCID: PMC9314618 DOI: 10.1002/chem.202104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/16/2022]
Abstract
The assessment of unregulated level of enzyme activity is a crucial parameter for early diagnoses in a wide range of pathologies. In this study, we propose the use of electron paramagnetic resonance (EPR) as an easy method to probe carboxylesterase (CE) enzymatic activity in vitro. For this application, were synthesized two amphiphilic, nitroxide containing esters, namely Tempo-C12 (T-C12) and Tempo-2-C12 (T-2-C12). They exhibit low solubility in water and form stable micelles in which the radicals are EPR almost silent, but the hydrolysis of the ester bond yields narrows and intense EPR signals. The intensity of the EPR signals is proportional to the enzymatic activity. CEs1, CEs2 and esterase from porcine liver (PLE) were investigated. The obtained results show that T-C12 and T-2-C12-containing systems display a much higher selectivity toward the CEs2, with a Limit of Detection of the same order of those ones obtained with optical methods.
Collapse
Affiliation(s)
- Sabrina Elkhanoufi
- University of TorinoDepartment of Molecular Biotechnology and Health Sciencesvia Nizza 5210126TorinoItaly
| | - Rachele Stefania
- University of TorinoDepartment of Molecular Biotechnology and Health Sciencesvia Nizza 5210126TorinoItaly
| | - Diego Alberti
- University of TorinoDepartment of Molecular Biotechnology and Health Sciencesvia Nizza 5210126TorinoItaly
| | - Simona Baroni
- University of TorinoDepartment of Molecular Biotechnology and Health Sciencesvia Nizza 5210126TorinoItaly
| | - Silvio Aime
- University of TorinoDepartment of Molecular Biotechnology and Health Sciencesvia Nizza 5210126TorinoItaly
| | - Simonetta Geninatti Crich
- University of TorinoDepartment of Molecular Biotechnology and Health Sciencesvia Nizza 5210126TorinoItaly
| |
Collapse
|
3
|
Liu Y, Wang H, Liu F, Kang J, Qiu F, Ke C, Huang Y, Han S, Zhang F, Zhuang X. Self-Assembly Approach Towards MoS 2 -Embedded Hierarchical Porous Carbons for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry 2021; 27:2155-2164. [PMID: 33165980 DOI: 10.1002/chem.202004371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Indexed: 11/09/2022]
Abstract
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core-shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2 ) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2 -anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec-1 , low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.
Collapse
Affiliation(s)
- Yuping Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Hongxing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Fengru Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Jialing Kang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Huang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Fan Zhang
- Themeso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites &, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- Themeso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites &, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Yang T, Liu J, Hu Z, Jiang J, Yan F, Feng G. Water-soluble conjugated polymeric micelles as a carrier for studying Pt( iv) release and imaging in living cells. Polym Chem 2020. [DOI: 10.1039/c9py01550g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, polyethylene glycol (PEG) was fixed on the side chains of a poly(p-phenyleneethynylene) (PPE) core via an esterification reaction, thus forming hydrophilic conjugated polymeric micelles (CPMs).
Collapse
Affiliation(s)
- Ting Yang
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jilin Liu
- School of Marine Science and Technology and Department of Optoelectronic Science
- Harbin Institute of Technology at Weihai
- Weihai
- People's Republic of China
| | - Zhiru Hu
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jie Jiang
- School of Marine Science and Technology and Department of Optoelectronic Science
- Harbin Institute of Technology at Weihai
- Weihai
- People's Republic of China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- International Research Center for Chemistry-Medicine Joint Innovation
- College of Chemistry
- Jilin University
| | - Guodong Feng
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
5
|
Ordanini S, Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics 2018; 10:E209. [PMID: 30388744 PMCID: PMC6321574 DOI: 10.3390/pharmaceutics10040209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Unimolecular polymeric micelles are a class of single-molecule amphiphilic core-shell polymeric architectures, where the hydrophobic core is well stabilized by the hydrophilic shell, avoiding intermolecular core-core interactions. Multi-arm copolymers with a dendritic core, as well as hyperbranched and comb-like polymers, can form unimolecular micelles easily. In this review, examples of polymers able to form detectable unimolecular micelles will be presented, summarizing the analytical techniques used to characterize the unimolecular micelles and discriminate them from other supramolecular aggregates, such as multi-micelle aggregates. Unimolecular micelles are suitable for the nanoencapsulation of guest molecules. Compared to traditional supramolecular micelles, unimolecular micelles do not disassemble under dilution and are stable to environmental modifications. Recent examples of their application as drug delivery systems, endowed with increased stability and transport properties, will be discussed.
Collapse
Affiliation(s)
- Stefania Ordanini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
6
|
Li H, Liu H, Nie T, Chen Y, Wang Z, Huang H, Liu L, Chen Y. Molecular bottlebrush as a unimolecular vehicle with tunable shape for photothermal cancer therapy. Biomaterials 2018; 178:620-629. [DOI: 10.1016/j.biomaterials.2018.03.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/22/2022]
|
7
|
Bao B, Su P, Zhu J, Chen J, Xu Y, Gu B, Liu Y, Wang L. Rapid aptasensor capable of simply detect tumor markers based on conjugated polyelectrolytes. Talanta 2018; 190:204-209. [PMID: 30172500 DOI: 10.1016/j.talanta.2018.07.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 01/08/2023]
Abstract
In this paper, a very simple, easily-operated and universal platform is proposed for tumor marker detection. In this strategy, tumor marker-specific aptamer, which can quench the fluorescence of polyfluorene-based cationic conjugated polyelectrolytes (PFN+), are used as recognizing probes. Upon addition of tumor marker, the aptamer can be assembled into the tumor marker-aptamer complex, resulting in fluorescence recovery of PFN+ and the detection of the targets. The most widely-used tumor markers, carcinoembryonic antigen (CEA) and fetoprotein (AFP) have been chosen as the model analytes for this work. The sensing method is capable of rapidly detect target protein within 5 min without complex handling procedure and expensive instruments. Compared with previous studies, the assay presented here is really simple and avoids either conjugated polyelectrolytes (CPEs) modification or oligonucleotide labeling. This method also shows a wide detection range of 3 orders of magnitude and the detection limit is 0.316 ng/mL for CEA and 1.76 ng/mL for AFP. Furthermore, the approach requires only a convenient"mix-and-detect" procedure and offers a universal platform for the sensitive detection of any target molecule of choice according to the selected aptamer.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Jin Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Bingbing Gu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Yunfei Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM) & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Jin X, Sun P, Tong G, Zhu X. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis. Biomaterials 2018; 178:738-750. [PMID: 29429845 DOI: 10.1016/j.biomaterials.2018.01.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pei Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
9
|
Bao B, Pan Y, Gu B, Chen J, Xu Y, Su P, Liu Y, Tong L, Wang L. Highly sensitive detection of nucleic acids using a cascade amplification strategy based on exonuclease III-assisted target recycling and conjugated polyelectrolytes. Analyst 2018; 143:4267-4272. [DOI: 10.1039/c8an01024b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric and cascade amplification strategy that combines the signal amplification and effecitive FRET property of CPEs with the Exo III-assisted target recycling method has been developed for DNA detection.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yanrui Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Bingbing Gu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yunfei Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Li Tong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| |
Collapse
|
10
|
Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B 2018; 6:5198-5214. [DOI: 10.1039/c8tb01519h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced antibacterial materials are classified and introduced, and their applications in multimodal imaging and therapy are reviewed.
Collapse
Affiliation(s)
- Shuai Chen
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qiaoying Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xin Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
11
|
|
12
|
Saxena S, Jayakannan M. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells. Biomacromolecules 2017; 18:2594-2609. [DOI: 10.1021/acs.biomac.7b00710] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
13
|
Mohammadifar E, Adeli M, Kharat AN, Namazi H, Haag R. Stimuli-Responsive Core Multishell Dendritic Nanocarriers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ehsan Mohammadifar
- School of Chemistry; University College of Science; University of Tehran; 1417466191 Tehran Iran
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
- Department of Chemistry; Faculty of Science; Lorestan University; 6813833946 Khoramabad Iran
| | - Ali Nemati Kharat
- School of Chemistry; University College of Science; University of Tehran; 1417466191 Tehran Iran
| | - Hassan Namazi
- Laboratory of Dendrimers and Biopolymers; Faculty of Chemistry; University of Tabriz; 5166616471 Tabriz Iran
| | - Rainer Haag
- Department of Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| |
Collapse
|
14
|
Bao B, Zhu J, Gong L, Chen J, Pan Y, Wang L. Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction. RSC Adv 2017. [DOI: 10.1039/c6ra25882d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel cascade amplification strategy that combines the molecular wire effects of CPEs with the signal amplification capability of the HCR has been developed for sensitive DNA detection.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jin Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lina Gong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yanrui Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| |
Collapse
|
15
|
Molina BG, Bendrea AD, Cianga L, Armelin E, del Valle LJ, Cianga I, Alemán C. The biocompatible polythiophene-g-polycaprolactone copolymer as an efficient dopamine sensor platform. Polym Chem 2017. [DOI: 10.1039/c7py01326d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic copolymers consisting of an all conjugated polythiophene backbone and sparsely attached oligo-ε-caprolactone side chains have been prepared.
Collapse
Affiliation(s)
- Brenda G. Molina
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - Anca D. Bendrea
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi
- Romania
| | - Luminita Cianga
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi
- Romania
| | - Elaine Armelin
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - Ioan Cianga
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi
- Romania
| | - Carlos Alemán
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| |
Collapse
|
16
|
Li Y, Yang HY, Lee DS. Polymer-Based and pH-Sensitive Nanobiosensors for Imaging and Therapy of Acidic Pathological Areas. Pharm Res 2016; 33:2358-72. [DOI: 10.1007/s11095-016-1944-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
|
17
|
Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polym Chem 2016. [DOI: 10.1039/c6py01006g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unimolecular micelles have high functionalities, encapsulation capabilities and site specific confinement abilities in various applications.
Collapse
Affiliation(s)
- Xiaoshan Fan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|