1
|
Li Y, Zhang Q, Dai Z, Wang R, Li Z, Huang Y, Lai R, Wei F, Shao F. Surfactant-Assisted Construction of Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501580. [PMID: 40287970 DOI: 10.1002/advs.202501580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Indexed: 04/29/2025]
Abstract
Covalent organic frameworks (COFs), characterized by their unique ordered pore structures, chemical diversity, and high degree of designability, have demonstrated immense application potential across multiple fields. However, traditional synthesis methods often encounter challenges such as low crystallinity and uneven morphology. The introduction of surfactants has opened up new pathways for the synthesis of COFs. Leveraging their intermolecular interactions and self-assembly properties, surfactants can effectively regulate the nucleation, growth processes, and ultimate structure and properties of COFs. This paper systematically reviews the latest research achievements and future trends in surfactant-assisted COF synthesis, emphasizing the crucial role of surfactants as key additives in the preparation of COFs. Surfactants not only facilitate uniform nucleation and growth of COFs, enhancing the crystallinity and structural order of the products but also enable precise and diverse regulation of the dimensionality, morphology, and structure of COFs. Furthermore, by influencing the dispersion and processability of COFs, surfactants enhance their practicality and workability. Finally, the paper presents some prospects for the challenges and future opportunities in this emerging research area.
Collapse
Affiliation(s)
- Youqi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingqing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhendong Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Renzhong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhaohua Li
- Suzhou Laboratory, Suzhou, 215100, China
| | - Yu Huang
- Suzhou Laboratory, Suzhou, 215100, China
| | | | - Facai Wei
- Suzhou Laboratory, Suzhou, 215100, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215109, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Suzhou Laboratory, Suzhou, 215100, China
| |
Collapse
|
2
|
Lahnsteiner M, Caldera M, Moura HM, Cerrón-Infantes DA, Roeser J, Konegger T, Thomas A, Menche J, Unterlass MM. Hydrothermal polymerization of porous aromatic polyimide networks and machine learning-assisted computational morphology evolution interpretation. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:19754-19769. [PMID: 34589226 PMCID: PMC8439099 DOI: 10.1039/d1ta01253c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
We report on the hydrothermal polymerization (HTP) of polyimide (PI) networks using the medium H2O and the comonomers 1,3,5-tris(4-aminophenyl)benzene (TAPB) and pyromellitic acid (PMA). Full condensation is obtained at minimal reaction times of only 2 h at 200 °C. The PI networks are obtained as monoliths and feature thermal stabilities of >500 °C, and in several cases even up to 595 °C. The monoliths are built up by networks of densely packed, near-monodisperse spherical particles and annealed microfibers, and show three types of porosity: (i) intrinsic inter-segment ultramicroporosity (<0.8 nm) of the PI networks composing the particles (∼3-5 μm), (ii) interstitial voids between the particles (0.1-2 μm), and (iii) monolith cell porosity (∽10-100 μm), as studied via low pressure gas physisorption and Hg intrusion porosimetry analyses. This unique hierarchical porosity generates an outstandingly high specific pore volume of 7250 mm3 g-1. A large-scale micromorphological study screening the reaction parameters time, temperature, and the absence/presence of the additive acetic acid was performed. Through expert interpretation of hundreds of scanning electron microscopy (SEM) images of the products of these experiments, we devise a hypothesis for morphology formation and evolution: a monomer salt is initially formed and subsequently transformed to overall eight different fiber, pearl chain, and spherical morphologies, composed of PI and, at long reaction times (>48 h), also PI/SiO2 hybrids that form through reaction with the reaction vessel. Moreover, we have developed a computational image analysis pipeline that deciphers the complex morphologies of these SEM images automatically and also allows for formulating a hypothesis of morphology development in HTP that is in good agreement with the manual morphology analysis. Finally, we upscaled the HTP of PI(TAPB-PMA) and processed the resulting powder into dense cylindrical specimen by green solvent-free warm-pressing, showing that one can follow the full route from the synthesis of these PI networks to a final material without employing harmful solvents.
Collapse
Affiliation(s)
- Marianne Lahnsteiner
- Technische Universität Wien, Institute of Materials Chemistry Getreidemarkt 9/165 1060 Vienna Austria
- Technische Universität Wien, Institute of Applied Synthetic Chemistry Getreidemarkt 9/163 1060 Vienna Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Vienna Austria
| | - Michael Caldera
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Vienna Austria
- Max F. Perutz Labs, Campus Vienna Biocenter 5 Dr.-Bohr-Gasse 9 1030 Vienna Austria
| | - Hipassia M Moura
- Technische Universität Wien, Institute of Materials Chemistry Getreidemarkt 9/165 1060 Vienna Austria
- Technische Universität Wien, Institute of Applied Synthetic Chemistry Getreidemarkt 9/163 1060 Vienna Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Vienna Austria
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
| | - D Alonso Cerrón-Infantes
- Technische Universität Wien, Institute of Materials Chemistry Getreidemarkt 9/165 1060 Vienna Austria
- Technische Universität Wien, Institute of Applied Synthetic Chemistry Getreidemarkt 9/163 1060 Vienna Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Vienna Austria
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
| | - Jérôme Roeser
- Technische Universität Berlin, Institute of Chemistry Str. des 17. Juni 115 10623 Berlin Germany
| | - Thomas Konegger
- Technische Universität Wien, Institute of Chemical Technologies and Analytics Getreidemarkt 9/164 1060 Vienna Austria
| | - Arne Thomas
- Technische Universität Berlin, Institute of Chemistry Str. des 17. Juni 115 10623 Berlin Germany
| | - Jörg Menche
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Vienna Austria
- Max F. Perutz Labs, Campus Vienna Biocenter 5 Dr.-Bohr-Gasse 9 1030 Vienna Austria
| | - Miriam M Unterlass
- Technische Universität Wien, Institute of Materials Chemistry Getreidemarkt 9/165 1060 Vienna Austria
- Technische Universität Wien, Institute of Applied Synthetic Chemistry Getreidemarkt 9/163 1060 Vienna Austria
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Vienna Austria
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
| |
Collapse
|
3
|
Taublaender MJ, Mezzavilla S, Thiele S, Glöcklhofer F, Unterlass MM. Hydrothermale Synthese von konjugierten Polymeren am Beispiel von Pyrronpolymeren und Polybenzimidazolen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Josef Taublaender
- Institute of Applied Synthetic Chemistry Technische Universität Wien Getreidemarkt 9/163 1060 Vienna Österreich
- Institute of Materials Chemistry Technische Universität Wien Getreidemarkt 9/165 1060 Vienna Österreich
| | - Stefano Mezzavilla
- Department of Materials Imperial College London, Royal School of Mines Prince Consort Road London SW7 2AZ Großbritannien
| | - Sophia Thiele
- Institute of Applied Synthetic Chemistry Technische Universität Wien Getreidemarkt 9/163 1060 Vienna Österreich
- Institute of Materials Chemistry Technische Universität Wien Getreidemarkt 9/165 1060 Vienna Österreich
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Plastic Electronics Imperial College London 80 Wood Lane London W12 0BZ Großbritannien
| | - Miriam M. Unterlass
- Institute of Applied Synthetic Chemistry Technische Universität Wien Getreidemarkt 9/163 1060 Vienna Österreich
- Institute of Materials Chemistry Technische Universität Wien Getreidemarkt 9/165 1060 Vienna Österreich
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 144 1090 Vienna Österreich)
| |
Collapse
|
4
|
Taublaender MJ, Mezzavilla S, Thiele S, Glöcklhofer F, Unterlass MM. Hydrothermal Generation of Conjugated Polymers Using the Example of Pyrrone Polymers and Polybenzimidazoles. Angew Chem Int Ed Engl 2020; 59:15050-15060. [PMID: 32255546 PMCID: PMC7496105 DOI: 10.1002/anie.202000367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 11/09/2022]
Abstract
Various polyimides and polyamides have recently been prepared via hydrothermal synthesis in nothing but H2 O under high-pressure and high-temperature conditions. However, none of the prepared polymers feature a truly conjugated polymer backbone. Here, we report on an expansion of the synthetic scope of this straightforward and inherently environmentally friendly polymerization technique to the generation of conjugated polymers. Selected representatives of two different polymer classes, pyrrone polymers and polybenzimidazoles, were generated hydrothermally. We present a mechanistic discussion of the polymer formation process as well as an electrochemical characterization of the most promising product.
Collapse
Affiliation(s)
- M. Josef Taublaender
- Institute of Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/1631060ViennaAustria
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/1651060ViennaAustria
| | - Stefano Mezzavilla
- Department of MaterialsImperial College London, Royal School of MinesPrince Consort RoadLondonSW7 2AZUK
| | - Sophia Thiele
- Institute of Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/1631060ViennaAustria
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/1651060ViennaAustria
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Plastic ElectronicsImperial College London80 Wood LaneLondonW12 0BZUK
| | - Miriam M. Unterlass
- Institute of Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/1631060ViennaAustria
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/1651060ViennaAustria
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 1441090ViennaAustria
| |
Collapse
|
5
|
Moura HM, Unterlass MM. Biogenic Metal Oxides. Biomimetics (Basel) 2020; 5:E29. [PMID: 32585892 PMCID: PMC7345149 DOI: 10.3390/biomimetics5020029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Biogenic metal oxides (MxOy) feature structures as highly functional and unique as the organisms generating them. They have caught the attention of scientists for the development of novel materials by biomimicry. In order to understand how biogenic MxOy could inspire novel technologies, we have reviewed examples of all biogenic MxOy, as well as the current state of understanding of the interactions between the inorganic MxOy and the biological matter they originate from and are connected to. In this review, we first summarize the origins of the precursors that living nature converts into MxOy. From the point-of-view of our materials chemists, we present an overview of the biogenesis of silica, iron and manganese oxides, as the only reported biogenic MxOy to date. These MxOy are found across all five kingdoms (bacteria, protoctista, fungi, plants and animals). We discuss the key molecules involved in the biosynthesis of MxOy, the functionality of the MxOy structures, and the techniques by which the biogenic MxOy can be studied. We close by outlining the biomimetic approaches inspired by biogenic MxOy materials and their challenges, and we point at promising directions for future organic-inorganic materials and their synthesis.
Collapse
Affiliation(s)
- Hipassia M. Moura
- Institute of Materials Chemistry, Vienna University of Technology, 1060 Vienna, Austria;
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Miriam M. Unterlass
- Institute of Materials Chemistry, Vienna University of Technology, 1060 Vienna, Austria;
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
6
|
Taublaender MJ, Reiter M, Unterlass MM. Highly Crystalline, Nanostructured Polyimide Microparticles via Green and Tunable Solvothermal Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00985] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Josef Taublaender
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
| | - Manuel Reiter
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
| | - Miriam M. Unterlass
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 144, 1090 Vienna, Austria
| |
Collapse
|
7
|
Unterlass MM. Heißes Wasser ermöglicht Kristallinität in organischen Materialien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Miriam M. Unterlass
- Institut für Materialchemie; Technische Universität Wien; Getreidemarkt 9/BC/2 Wien Österreich
| |
Collapse
|
8
|
Unterlass MM. Hot Water Generates Crystalline Organic Materials. Angew Chem Int Ed Engl 2018; 57:2292-2294. [DOI: 10.1002/anie.201713359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Miriam M. Unterlass
- Institute of Materials Chemistry; Technische Universität Wien; Getreidemarkt 9/BC/2 Wien Austria
| |
Collapse
|