1
|
Lamberink-Ilupeju JW, Willans MJ, Gilroy JB, Noël JJ, Blacquiere JM, Ragogna PJ. Multicomponent Synthesis of Poly(α-aminophosphine chalcogenide)s and Subsequent Depolymerization. Inorg Chem 2023; 62:15104-15109. [PMID: 37678149 DOI: 10.1021/acs.inorgchem.3c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Multicomponent reactions of primary phosphines (R-PH2), diimines (R'-N═C(H)-R-(H)C═N-R'), and chalcogens (O2, S8) generate poly(α-aminophosphine chalcogenide)s (4-7) through step-growth polymerization. Characterization of the linear polymers using 31P{1H} diffusion-ordered NMR spectroscopy (DOSY) experiments aided in determining the molecular weight (Mw) of the material. Subjecting the polyphosphine oxide or sulfide to reducing conditions in the presence of a Lewis acid resulted in complete depolymerization of the polymers, quantitatively releasing the 1° phosphine and diimine (2) starting materials, with concomitant reduction of diimine to diamine (9).
Collapse
Affiliation(s)
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
| | - James J Noël
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
- Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada
| | - Johanna M Blacquiere
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
| | - Paul J Ragogna
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 587, Canada
- Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada
| |
Collapse
|
2
|
Lu D, Zou X, Li C. Advances in the application of named reactions in polymer synthesis. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the development of polymer science, more and more named reactions have been applied to synthesizing polymers. Introducing new reactions into polymer synthesis is undoubtedly an excellent expansion for monomer and polymer libraries. In this review, the named reactions employed in polymer-chain synthesis were divided into seven types: electrophilic reactions, nucleophilic reactions, transition metal-mediated cross-coupling reactions, free radical reactions, pericyclic reactions, multi-component reactions and rearrangement reactions. The discussion was mainly focused on the progress in the utilization of these named reactions in polymer synthesis, which could be a valuable reference for researchers in the polymer field.
Collapse
Affiliation(s)
- Dawei Lu
- Beijing University of Chemical Technology, Beijing, China
| | - Xudong Zou
- Beijing University of Chemical Technology, Beijing, China
| | | |
Collapse
|
3
|
Wang R, Sun M, Wang C, Dong A, Zhang J. A facile and versatile strategy for synthesis of dopamine‐functionalized polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruosi Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Mengxiao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Chenyu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| |
Collapse
|
4
|
Öztürk T, Türkoğlu H. Synthesis and characterization of the graft copolymer including polyβ-butyrolactone and polyvinyl chloride by ring-opening polymerization and “click” chemistry. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Temel Öztürk
- Faculty of Arts and Sciences, Department of Chemistry, Giresun University, Giresun, Turkey
| | - Hasret Türkoğlu
- Faculty of Arts and Sciences, Department of Chemistry, Giresun University, Giresun, Turkey
| |
Collapse
|
5
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
6
|
Akar E, Kandemir D, Luleburgaz S, Kumbaraci V, Durmaz H. Efficient Post-Polymerization modification of pendant aldehyde functional polymer via reductive etherification reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ozukanar O, Cakmakci E, Daglar O, Durmaz H, Kumbaraci V. A double‐click strategy for the synthesis of P and N‐containing hydrolytically stable reactive flame retardant for photocurable networks. J Appl Polym Sci 2022. [DOI: 10.1002/app.52837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ozge Ozukanar
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Emrah Cakmakci
- Department of Chemistry Marmara University Istanbul Turkey
| | - Ozgun Daglar
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Hakan Durmaz
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Volkan Kumbaraci
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
8
|
Wang Y, Zhang Z. Multicomponent Synthesis of Imidazole-Based Cross-Conjugated Polymers via Bimetallic Cu(I)/Rh(II) Relay Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
9
|
Meyvacı E, Öztürk T. Modification of Poly(Styrene‐co‐Acrylonitrile) with Tetrazine by Inverse Electron Demand Diels‐Alder Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ergül Meyvacı
- Giresun University Department of Chemistry 28200 Giresun Turkey
| | - Temel Öztürk
- Giresun University Department of Chemistry 28200 Giresun Turkey
| |
Collapse
|
10
|
Pektas B, Sagdic G, Daglar O, Luleburgaz S, Gunay US, Hizal G, Tunca U, Durmaz H. Ultrafast synthesis of dialkyne-functionalized polythioether and post-polymerization modification via click chemistry. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang L, Yu Q, Liu L, Zhao H. Synthesis and modification of polymers by thiol-phenylsulfone substitution reaction. Chem Commun (Camb) 2022; 58:2148-2151. [PMID: 35050285 DOI: 10.1039/d1cc06557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiol chemistry is a type of highly efficient chemical reaction between thiols and functional groups. During the past two decades, thiol chemistry has been widely applied in the synthesis and modification of polymers. With the rapid development of polymer chemistry and materials science, more thiol click reactions, which can be efficiently performed under mild conditions, are required. In this research, the synthesis and modification of polymers by thiol-phenylsulfone substitution reactions are reported. A monomer containing two phenylsulfonyl groups is synthesized and the monomer is reacted with bisthiols under mild conditions, leading to the synthesis of novel polymers. Size exclusion chromatography, 1H NMR and differential scanning calorimetry results demonstrate the step-growth polymerization of the monomer. A combination of thiol-phenylsulfone and thiol-disulfide reactions are used in the post-polymerization modification.
Collapse
Affiliation(s)
- Lun Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Department of Chemistry, Nankai University, Tianjin 300071, China.
| | - Qianyu Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Department of Chemistry, Nankai University, Tianjin 300071, China.
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Department of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Department of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Hu D, Mao L, Wang M, Huang H, Hu R, Ma H, Yuan J, Wei Y. In Situ Visualization of Reversible Diels-Alder Reactions with Self-Reporting Aggregation-Induced Emission Luminogens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3485-3495. [PMID: 34994541 DOI: 10.1021/acsami.1c20758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamic reversible Diels-Alder (DA) reactions play essential roles in both academic and applied fields. Currently, in situ visualization and direct monitoring of the formation and cleavage of covalent bonds in DA reactions are hampered by finite compatibility and expensive precise instruments, especially limited in solid reactions. We herein report a fluorescence system capable of in situ visualization by naked eyes and monitoring DA/retro-DA reactions. With the fluorescence quenching effect, the synthesized TPEMI could work as an innovative self-indicator for both DA termination and retro-DA occurrence. The fluorescence increases during DA reactions, and the mechanism is investigated to establish qualitative and quantitative relations. Besides rapid screening of reaction conditions and monitoring of DA exchange processes, the TPEMI fluorescence system can visualize heterogeneous and solid-state reactions with the AIE character. The TPEMI platform is expected to offer novel insights into reversible DA processes and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Danning Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liucheng Mao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengshi Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongye Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Renjian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Ma
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan, China
| |
Collapse
|
13
|
MacKinnon D, Zhao T, Becer CR. Tuneable
N
‐Substituted Polyamides with High Biomass Content via Ugi 4 Component Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel MacKinnon
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Tieshuai Zhao
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - C. Remzi Becer
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
14
|
Alkan B, Daglar O, Luleburgaz S, Gungor B, Gunay US, Hizal G, Tunca U, Durmaz H. One-pot cascade polycondensation and Passerini three-component reactions for the synthesis of functional polyesters. Polym Chem 2022. [DOI: 10.1039/d1py01528a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A one-pot cascade four-component polymerization and post-polymerization modification reaction is introduced to synthetic polymer chemistry.
Collapse
Affiliation(s)
- Burcu Alkan
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Yalova Vocational School, University of Yalova, 77200 Yalova, Turkey
| | - Ozgun Daglar
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Serter Luleburgaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Begum Gungor
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Umit Tunca
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
15
|
Bhaumick P, Choudhury LH. Multicomponent click polymerization for the synthesis of coumarin containing 1,4-polytriazoles and their application as dye adsorbent. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Arslan M. Multicomponent approach for the synthesis of functional copolymers via tandem polycondensations of isatoic anhydride, bisaldehydes and bisprimary amines in trifluoroethanol. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Windbiel JT, Llevot A. Microgel Preparation by Miniemulsion Polymerization of Passerini Multicomponent Reaction Derived Acrylate Monomers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julian Tobias Windbiel
- Karlsruhe Institute of Technology (KIT), Laboratory of Applied Chemistry Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Eggenstein‐Leopoldshafen 76344 Germany
| | - Audrey Llevot
- Bordeaux INP University of Bordeaux, Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland, F‐33607 Pessac cedex France
| |
Collapse
|
18
|
Lee IH, Bang KT, Yang HS, Choi TL. Recent Advances in Diversity-Oriented Polymerization Using Cu-Catalyzed Multicomponent Reactions. Macromol Rapid Commun 2021; 43:e2100642. [PMID: 34715722 DOI: 10.1002/marc.202100642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Diversification of polymer structures is important for imparting various properties and functions to polymers, so as to realize novel applications of these polymers. In this regard, diversity-oriented polymerization (DOP) is a powerful synthetic strategy for producing diverse and complex polymer structures. Multicomponent polymerization (MCP) is a key method for realizing DOP owing to its combinatorial features and high efficiency. Among the MCP methods, Cu-catalyzed MCP (Cu-MCP) has recently paved the way for DOP by overcoming the synthetic challenges of the previous MCP methods. Here the emergence and progress of Cu-MCP, its current challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon, 16499, Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hee-Seong Yang
- Department of Energy System Research, Ajou University, Suwon, 16499, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
19
|
Lee HW, Lee NJ, Kim JG. Sequential Post-Polymerization Modification of Aldehyde Polymers to Ketone and Oxime Polymers. Macromol Rapid Commun 2021; 42:e2100478. [PMID: 34519386 DOI: 10.1002/marc.202100478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Indexed: 11/06/2022]
Abstract
A new sequential post-polymerization modification route has been developed for the synthesis of multifunctional polymers from a simple aldehyde polymer. In the first modification step, a template polymer derived from the radical polymerization of 4-vinyl benzaldehyde undergoes Rh-catalyzed hydroacylation with alkenes to furnish a group of ketone polymers. In the second modification step, Schiff base formation with alkoxy ammonium salts introduces a second group-an oxime functionality. Both the steps are highly efficient, introducing evenly distributed dual functionalities at the same position.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54986, Republic of Korea
| | - Nam Joo Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54986, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54986, Republic of Korea
| |
Collapse
|
20
|
Luleburgaz S, Hizal G, Tunca U, Durmaz H. Modification of Polyketone via Chlorodimethylsilane-Mediated Reductive Etherification Reaction: A Practical Way for Alkoxy-Functional Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Serter Luleburgaz
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Umit Tunca
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
21
|
Gungor B, Daglar O, Gunay US, Hizal G, Tunca U, Durmaz H. One‐Step Modification of Diacid‐Functional Polythioethers via Simultaneous Passerini and Esterification Reactions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Begum Gungor
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Ozgun Daglar
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Gurkan Hizal
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Umit Tunca
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Hakan Durmaz
- Department of Chemistry Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
22
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Savaş B, Çatıker E, Öztürk T, Meyvacı E. Synthesis and characterization of poly(α-methyl β-alanine)-poly(ε-caprolactone) tri arm star polymer by hydrogen transfer polymerization, ring-opening polymerization and "click" chemistry. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02367-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Daglar O, Luleburgaz S, Baysak E, Gunay US, Hizal G, Tunca U, Durmaz H. Nucleophilic Thiol-yne reaction in Macromolecular Engineering: From synthesis to applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Savaş B, Öztürk T. Synthesis and characterization of poly(vinyl chloride-g-methyl methacrylate) graft copolymer by redox polymerization and Cu catalyzed azide-alkyne cycloaddition reaction. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1788393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Temel Öztürk
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| |
Collapse
|
26
|
Affiliation(s)
- Elizabeth R. Gillies
- Department of Chemistry, Department of Chemical and Biochemical Engineering, Centre for Advanced Materials and Biomaterials Research, TheUniversity of Western Ontario London, ON Canada N6A 5B7
| |
Collapse
|
27
|
Extremely rapid postfunctionalization of maleate and fumarate main chain polyesters in the presence of TBD. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Schade O, Dannecker PK, Kalz KF, Steinbach D, Meier MAR, Grunwaldt JD. Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization. ACS OMEGA 2019; 4:16972-16979. [PMID: 31646244 PMCID: PMC6797053 DOI: 10.1021/acsomega.9b02373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 05/08/2023]
Abstract
Efficient synthesis of valuable platform chemicals from renewable feedstock is a challenging, yet essential strategy for developing technologies that are both economical and sustainable. In the present study, we investigated the synthesis of 2,5-furandicarboxylic acid (FDCA) in a two-step catalytic process starting from sucrose as largely available biomass feedstock. In the first step, 5-(hydroxymethyl)furfural (HMF) was synthesized by hydrolysis and dehydration of sucrose using sulfuric acid in a continuous reactor in 34% yield. In a second step, the resulting reaction solution was directly oxidized to FDCA without further purification over a Au/ZrO2 catalyst with 84% yield (87% selectivity, batch process), corresponding to 29% overall yield with respect to sucrose. This two-step process could afford the production of pure FDCA after the respective extraction/crystallization despite the impure intermediate HMF solution. To demonstrate the direct application of the biomass-derived FDCA as monomer, the isolated product was used for Ugi-multicomponent polymerizations, establishing a new application possibility for FDCA. In the future, this efficient two-step process strategy toward FDCA should be extended to further renewable feedstock.
Collapse
Affiliation(s)
- Oliver
R. Schade
- Institute
for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Kai F. Kalz
- Institute
for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - David Steinbach
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Agricultural Engineering, Conversion Technologies of Biobased Resources, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany
| | - Michael A. R. Meier
- Institute
for Organic Chemistry (IOC), KIT, Straße am Forum 7, 76131 Karlsruhe, Germany
- E-mail: (M.A.R.M.)
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
- E-mail: (J.-D.G.)
| |
Collapse
|
29
|
Gou Z, Zhang X, Zuo Y, Lin W. Synthesis of Silane-Based Poly(thioether) via Successive Click Reaction and Their Applications in Ion Detection and Cell Imaging. Polymers (Basel) 2019; 11:polym11081235. [PMID: 31349686 PMCID: PMC6723054 DOI: 10.3390/polym11081235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
A series of poly(thioether)s containing silicon atom with unconventional fluorescence were synthesized via successive thiol click reaction at room temperature. Although rigid π-conjugated structure did not exist in the polymer chain, the poly(thioether)s exhibited excellent fluorescent properties in solutions and showed visible blue fluorescence in living cells. The strong blue fluorescence can be attributed to the aggregation of lone pair electron of heteroatom and coordination between heteroatom and Si atom. In addition, the responsiveness of poly(thioether) to metal ions suggested that the selectivity of poly(thioether) to Fe3+ ion could be enhanced by end-modifying with different sulfhydryl compounds. This study further explored their application in cell imaging and studied their responsiveness to Fe3+ in living cells. It is expected that the described synthetic route could be extended to synthesize novel poly(thioether)s with superior optical properties. Their application in cell imaging and ion detection will broaden the range of application of poly(thioether)s.
Collapse
Affiliation(s)
- Zhiming Gou
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, China
| | - Xiaomei Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, China
| | - Yujing Zuo
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, China.
| |
Collapse
|
30
|
Stiernet P, Lecomte P, De Winter J, Debuigne A. Ugi Three-Component Polymerization Toward Poly(α-amino amide)s. ACS Macro Lett 2019; 8:427-434. [PMID: 35651127 DOI: 10.1021/acsmacrolett.9b00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Due to their great modularity, ease of implementation, and atom economy, multicomponent reactions (MCRs) are becoming increasingly popular macromolecular engineering tools. In this context, MCRs suitable in polymer synthesis are eagerly searched for. This work demonstrates the potential of the Ugi-three component reaction (Ugi-3CR) for the design of polymers and, in particular, of poly(α-amino amide)s. A series of polymers containing amino and amido groups within their backbone were obtained through a one-pot process by reacting aliphatic or aromatic diamines, diisocyanides, and aldehydes. The impact of temperature, concentration, catalyst loading, and substrates on polymerization efficiency is discussed. A preliminary study on the thermal properties and the solution behavior of these poly(α-amino amide)s was carried out. An aliphatic-rich derivative notably showed some pH-responsiveness in water via protonation-deprotonation of its amino groups.
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, 7000 Mons, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| |
Collapse
|
31
|
Noy JM, Li Y, Smolan W, Roth PJ. Azide–para-Fluoro Substitution on Polymers: Multipurpose Precursors for Efficient Sequential Postpolymerization Modification. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Janina-Miriam Noy
- Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Yuman Li
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Willi Smolan
- Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Peter J. Roth
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
32
|
Baysak E, Gunay US, Daglar O, Durmaz H. Synthesis and post-polymerization modification of polyester containing pendant thiolactone units. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Goseki R, Zhang F, Takahata K, Uchida S, Ishizone T. Synthesis of a well-defined alternating copolymer of 1,1-diphenylethylene and tert-butyldimethylsilyloxymethyl substituted styrene by anionic copolymerization: toward tailored graft copolymers with controlled side chain densities. Polym Chem 2019. [DOI: 10.1039/c9py01161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Well-defined alternating copolymers comprising 1,1-diphenylethylene (DPE) and styrene derivative having sterically bulky tert-butyldimethylsilyloxymethyl group at the meta position (St-TBS) were successfully synthesized.
Collapse
Affiliation(s)
- Raita Goseki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Fan Zhang
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuki Takahata
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
34
|
Arslan M, Tasdelen MA. Click Chemistry in Macromolecular Design: Complex Architectures from Functional Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0030-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|