1
|
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C, Huang F, Cao Y. Interface Engineering for Highly Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212236. [PMID: 36867581 DOI: 10.1002/adma.202212236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Indexed: 07/28/2023]
Abstract
Organic solar cells (OSCs) have made dramatic advancements during the past decades owing to the innovative material design and device structure optimization, with power conversion efficiencies surpassing 19% and 20% for single-junction and tandem devices, respectively. Interface engineering, by modifying interface properties between different layers for OSCs, has become a vital part to promote the device efficiency. It is essential to elucidate the intrinsic working mechanism of interface layers, as well as the related physical and chemical processes that manipulate device performance and long-term stability. In this article, the advances in interface engineering aimed to pursue high-performance OSCs are reviewed. The specific functions and corresponding design principles of interface layers are summarized first. Then, the anode interface layer, cathode interface layer in single-junction OSCs, and interconnecting layer of tandem devices are discussed in separate categories, and the interface engineering-related improvements on device efficiency and stability are analyzed. Finally, the challenges and prospects associated with application of interface engineering are discussed with the emphasis on large-area, high-performance, and low-cost device manufacturing.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Haiyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Xudong Qin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| |
Collapse
|
2
|
Gu Y, Liu Y, Russell TP. Fullerene‐Based Interlayers for Breaking Energy Barriers in Organic Solar Cells. Chempluschem 2020; 85:751-759. [DOI: 10.1002/cplu.202000082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/23/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ying Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Thomas P. Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
- Polymer Science and Engineering DepartmentUniversity of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| |
Collapse
|
3
|
Liu J, Wang Y, Jiang P, Tu G. Functionalized Amphiphilic Diblock Fullerene Derivatives as a Cathode Buffer Layer for Efficient Inverted Organic Solar Cells. ACS OMEGA 2020; 5:1336-1345. [PMID: 32010803 PMCID: PMC6990446 DOI: 10.1021/acsomega.9b01507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The amphipathic interface layer sandwiched between cathode and active layers had always played a role to balance interface compatibility and interfacial energy barriers in inverted organic solar cell (OSC) devices. Two functionalized amphiphilic diblock fullerene derivatives named C60-2DPE and C60-4HTPB were synthesized and applied as an interface layer in modifying zinc oxide (ZnO). Based on their amphipathic characteristics, the solvent treatment was introduced to cause an obvious self-assembly of the two materials on ZnO. The introduced cathode buffer layer could improve the interface compatibility between ZnO and the organic active layer effectively with its amphipathic blocks. Based on the PTB7-Th:PC71BM system, the OSC devices with a functionalized fullerene derivative layer could reach a power conversion efficiency of 9.21 and 8.86% for C60-2DPE and C60-4HTPB , respectively.
Collapse
Affiliation(s)
- Jikang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Pengfei Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Guoli Tu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| |
Collapse
|
4
|
Li T, Chen Z, Wang Y, Tu J, Deng X, Li Q, Li Z. Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3301-3326. [PMID: 31845796 DOI: 10.1021/acsami.9b19830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interface engineering is very important to the high performance of organic optoelectronic devices that are commonly composed of multilayer thin solid films. Interfacial materials are particularly crucial for interface engineering, and a variety of materials have been employed at the interface to accomplish various different functions. This Review summarizes various materials for the interfaces and some of the latest progress in organic solar cells (OSCs) and organic photodetectors (OPDs).
Collapse
Affiliation(s)
- Tianhao Li
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Zixuan Chen
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Yangyang Wang
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Jin Tu
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Xianyu Deng
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Qianqian Li
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
- Institute of Molecular Aggregation Science , Tianjin University , Tianjin 30072 , China
| |
Collapse
|