1
|
Optoelectronic and DFT investigation of thienylenevinylene based materials for thin film transistors. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Narrowband Near-Infrared Perovskite/Organic Photodetector: TCAD Numerical Simulation. CRYSTALS 2022. [DOI: 10.3390/cryst12081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Narrowband photodetectors (PD) established in the near-infrared (NIR) wavelength range are highly required in a variety of applications including high-quality bioimaging. In this simulation study, we propose a filter-less narrowband PD based on the architecture of perovskite/organic heterojunction. The most decisive part of the photodetector is the hierarchical configuration of a larger bandgap perovskite material with a thicker film followed by a lower bandgap organic material with a narrower layer. The design of the structure is carried out by TCAD numerical simulations. Our structure is based on an experimentally validated wideband organic PD, which is modified by invoking an additional perovskite layer having a tunable bandgap. The main detector device comprises of ITO/perovskite (CsyFA1−yPb(IxBr1−x)3)/organic blend (PBDTTT-c:C60-PCBM)/PEDOT:PSS/Al. The simulation results show that the proposed heterojunction PD achieves satisfactory performance when the thickness of perovskite and organic layers are 2.5 µm and 500 nm, respectively. The designed photodetector achieves a narrow spectral response at 730 nm with a full width at half-maximum (FWHM) of 33 nm in the detector, while having a responsivity of about 0.12 A/W at zero bias. The presented heterojunction perovskite/organic PD can efficiently detect light in the wavelength range of 700 to 900 nm. These simulation results can be employed to drive the development of filter-less narrowband NIR heterojunction PD.
Collapse
|
3
|
Wang Y, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K. Narrowband organic photodetectors - towards miniaturized, spectroscopic sensing. MATERIALS HORIZONS 2022; 9:220-251. [PMID: 34704585 DOI: 10.1039/d1mh01215k] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Omnipresent quality monitoring in food products, blood-oxygen measurement in lightweight conformal wrist bands, or data-driven automated industrial production: Innovation in many fields is being empowered by sensor technology. Specifically, organic photodetectors (OPDs) promise great advances due to their beneficial properties and low-cost production. Recent research has led to rapid improvement in all performance parameters of OPDs, which are now on-par or better than their inorganic counterparts, such as silicon or indium gallium arsenide photodetectors, in several aspects. In particular, it is possible to directly design OPDs for specific wavelengths. This makes expensive and bulky optical filters obsolete and allows for miniature detector devices. In this review, recent progress of such narrowband OPDs is systematically summarized covering all aspects from narrow-photo-absorbing materials to device architecture engineering. The recent challenges for narrowband OPDs, like achieving high responsivity, low dark current, high response speed, and good dynamic range are carefully addressed. Finally, application demonstrations covering broadband and narrowband OPDs are discussed. Importantly, several exciting research perspectives, which will stimulate further research on organic-semiconductor-based photodetectors, are pointed out at the very end of this review.
Collapse
Affiliation(s)
- Yazhong Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Shen Xing
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Felix Dollinger
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| |
Collapse
|
4
|
Park KH, Go J, Lim B, Noh Y. Recent progress in lactam‐based polymer semiconductors for organic electronic devices. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kwang Hun Park
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT) Ulsan Republic of Korea
| | - Ji‐Young Go
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Republic of Korea
| | - Bogyu Lim
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT) Ulsan Republic of Korea
| | - Yong‐Young Noh
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Republic of Korea
| |
Collapse
|
5
|
Opoku H, Lee JH, Nketia-Yawson B, Bae S, Lee JJ, Ahn H, Jo JW. Configurationally Random Polythiophene for Improved Polymer Ordering and Charge-Transporting Ability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40599-40606. [PMID: 32805855 DOI: 10.1021/acsami.0c11165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Random polythiophene polymers are characterized by the arbitrary sequences of monomeric units along polymer backbones. These untailored orientations generally result in the twisting of thiophene rings out of the conjugation planarity in addition to steric repulsions experienced among substituted alkyl chains. These tendencies have limited close polymer packing, which has been detrimental to charge transport in these moieties. To ameliorate charge transport in these classes of polymers, we make use of simple Stille coupling polymerization to synthesize highly random polythiophene polymers. We induced a positive microstructural change between polymer chains by attuning the ratio between alkyl-substituted and nonalkyl-substituted monomer units along the backbones. The optimized random polythiophene was found to have enhanced intermolecular interaction, increased size of crystallites, and stronger tendency to take edge orientation compared with both regiorandom and regioregular poly(3-hexylthiophene) polymers. Incorporation of the optimized random polythiophene as an active material in solid-state electrolyte-gated organic field-effect transistors exhibited better performance than the control device using regioregular poly(3-hexylthiophene), with a high hole mobility up to 4.52 cm2 V-1 s-1 in ambient conditions.
Collapse
Affiliation(s)
- Henry Opoku
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Ji Hyeon Lee
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Benjamin Nketia-Yawson
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Seunghwan Bae
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Chonan, Chungcheongnam 31056, Republic of Korea
| | - Jae-Joon Lee
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jea Woong Jo
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
6
|
Theoretical Study of the Effect of π-Bridge on Optical and Electronic Properties of Carbazole-Based Sensitizers for DSSCs. Molecules 2020; 25:molecules25163670. [PMID: 32806573 PMCID: PMC7464466 DOI: 10.3390/molecules25163670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
Eight novel metal-free organic sensitizers were proposed for dye-sensitized solar cells (DSSCs), theoretically calculated and studied via density functional theory with D-π-A structure. These proposals were formed to study the effect of novel π-bridges, using carbazole as the donor group and cyanoacrylic acid as the anchorage group. Through the M06/6-31G(d) level of theory, ground state geometry optimization, vibrational frequencies, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were calculated. Further, chemical reactivity parameters were obtained and analyzed, such as chemical hardness (η), electrophilicity index (ω), electroaccepting power (ω+) and electrodonating power (ω-). Free energy of electron injection (ΔGinj) and light-harvesting efficiency (LHE) also were calculated and discussed. On the other hand, absorption wavelengths, oscillator strengths, and electron transitions were calculated through time-dependent density functional theory with the M06-2X/6-31G(d) level of theory. In conclusion, the inclusion of thiophene groups and the Si heteroatom in the π-bridge improved charge transfer, chemical stability, and other optoelectronic properties of carbazole-based dyes.
Collapse
|
7
|
Panigrahi P, Mallick MK, Mohanty S, Nayak SK, Palai AK. EDOT Based Terpolymers: Facile Synthesis via Direct C‐H Arylation and Barrier Layer in Dye Sensitized Solar Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202001653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pranshula Panigrahi
- School for Advanced Research in Polymers (SARP) LARPM, CIPET, Patia Bhubaneswar 24 ODISHA INDIA
| | - Manoj K. Mallick
- School for Advanced Research in Polymers (SARP) LARPM, CIPET, Patia Bhubaneswar 24 ODISHA INDIA
| | - Smita Mohanty
- School for Advanced Research in Polymers (SARP) LARPM, CIPET, Patia Bhubaneswar 24 ODISHA INDIA
| | - Sanjay K. Nayak
- School for Advanced Research in Polymers (SARP) LARPM, CIPET, Patia Bhubaneswar 24 ODISHA INDIA
| | - Akshaya K. Palai
- School for Advanced Research in Polymers (SARP) LARPM, CIPET, Patia Bhubaneswar 24 ODISHA INDIA
| |
Collapse
|
8
|
Ding Y, Zhang X, Feng H, Ke X, Meng L, Sun Y, Guo Z, Cai Y, Jiao C, Wan X, Li C, Zheng N, Xie Z, Chen Y. Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27425-27432. [PMID: 32466636 DOI: 10.1021/acsami.0c05331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adding an additive is one of the effective strategies to fine-tune active layer morphology and improve performance of organic solar cells. In this work, a binary additive 1,8-diiodooctane (DIO) and 2,6-dimethoxynaphthalene (DMON) to optimize the morphology of PBDB-T:TTC8-O1-4F-based devices is reported. With the binary additive, a power conversion efficiency (PCE) of 13.22% was achieved, which is higher than those of devices using DIO (12.05%) or DMON (11.19%) individually. Comparison studies demonstrate that DIO can induce the acceptor TTC8-O1-4F to form ordered packing, while DMON can inhibit excessive aggregation of the donor and acceptor. With the synergistic effect of these two additives, the PBDB-T:TTC8-O1-4F blend film with DIO and DMON exhibits a suitable phase separation and crystallite size, leading to a high short-circuit current density (Jsc) of 23.04 mA·cm-2 and a fill factor of 0.703 and thus improved PCE.
Collapse
Affiliation(s)
- Yunqian Ding
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xin Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanran Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Ke
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lingxian Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanna Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziqi Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cancan Jiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South, China University of Technology, Guangzhou 510640, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South, China University of Technology, Guangzhou 510640, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Koyuncu S, Hu P, Li Z, Liu R, Bilgili H, Yagci Y. Fluorene–Carbazole-Based Porous Polymers by Photoinduced Electron Transfer Reactions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sermet Koyuncu
- Department of Chemical Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Peng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhiquan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Hakan Bilgili
- Central Research Laboratories, Izmir Katip Celebi University, 35620 İzmir, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, 34469 Istanbul, Turkey
- King Abdulaziz University, Faculty of Science, Chemistry Department, 21589 Jeddah, SaudiArabia
| |
Collapse
|